
Heat, Mass, and Momentum Transfer M. Bannerman

This document contains the tutorial questions for the 15-credit EX3030 Heat, Mass, and
Momentum Transfer delivered at the University of Aberdeen. This course is also partially
delivered as a 10-credit EM40JN Heat and Momentum Transfer course.

The recommended questions you should solve for each week are:

• Tutorial 1: Q. 1 to Q. 11.

• Tutorial 2: Q. 13 and Q. 14.

• Tutorial 3: Q. 15 and Q. 18.

• Tutorial 4: Q. 26 and Q. 31.

• Tutorial 5: Q. 27, Q. 28, and Q. 33.

• Tutorial 6: Q. 35 and Q. 46.

• Tutorial 9: Q. 52, Q. 53, and Q. 56.

• Tutorial 10: Q. 59, Q. 61, and Q. 62.

• Tutorial 11: Q. 68, Q. 69, and Q. 71.

All other questions are provided for additional practice and should help you to explore all
aspects of the course.

Fully worked solutions are available but you should attempt the problems without the solu-
tions, its the only way to find out what you don’t know!

Where marks are given, these are indicative of the relative weighting each part of a question
might have. Please note, the number of questions in an exam (and exam durations) have
changed over the years, so the overall marks for a question may now be different to what is
reported here.

All past exam questions are collected in this document.

Questions

Question 1Q.1
Your house is 18◦C inside when it is 4◦C outside. If your walls are 20 cm thick and have a
thermal conductivity of 0.03 W m−1 K−1, calculate the heat lost per unit area of wall.
Notes: The heat transfer rate per unit area of wall, q (W m−2), is given by:

q = U ∆T

where U (W m−2 K−1) is the heat transfer coefficient, and ∆T is the driving temperature
difference. For solid, rectangular walls U = k/L, where k is the thermal conductivity and L is
the wall thickness.
Solution:
For conduction problems, we have

q =
k
L

(Ti − To)

=
0.03
0.2

(18 − 4) = 2.1 W m−2
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[Question end]

Question 2Q.2
Model your house as a box 10 m×10 m×10 m and calculate the heat transfer from its side
walls, is this estimate reasonable? What natural effects are missing from this model?
Notes: For simple heat transfer, the total heat transfer Q (W) is given by:

Q = q A = U A∆T (1)

Solution:
There are four sides to the house, each 100 m2; therefore, we have

Q = q A
= 400 × 2.1 = 840 W

This question is to get you thinking about modes of heat transfer, and remind you that you
already know quite a bit about it. We are missing effects from the roof, windows/doors, and
ventilation. We’re also missing convection and radiation, not to mention the layered nature
of each wall. This heat loss estimate is a little low, but it is sufficient to obtain an order of
magnitude estimate.

[Question end]

Question 3Q.3
What is the pressure at the bottom of the Mariana Trench (the deepest part of the ocean)?
Note: Its depth is 10.911 km and you may assume the density of water is roughly constant
at ρ = 1000 kg m−3.
Bernoulli’s equation is

1
2
ρ1 v2

1 + p1 + ρ1 g h1 =
1
2
ρ2 v2

2 + p2 + ρ2 g h2 (2)

Solution:
Assuming ocean water is stationary v1 = v2 = 0, and the surface h1 = 0 is at atmospheric

pressure p1 = 1 atm=1.013 bar, and g = 9.81 m s−2 we have:

1
2
ρ1 �

�7
0

v2
1 + p1 + ρ1 g ���

0
h1 =

1
2
ρ2 �

�7
0

v2
2 + p2 + ρ2 g h2

1.013 × 105 + 1000 × 9.81 × 10.911 × 103 = p2

p2 ≈ 1071 bar

[Question end]

Question 4Q.4
Assuming that blood has a density of 1060 kg m−3, what is the maximum height your heart
can lift your blood, given that a typical driving pressure of the heart is 100 mmHg (0.13 bar)?
Note: You can use Bernoulli’s equation and as you’re looking for the maximum height, you
may treat the blood as stationary at both ends.

6th December 2023 Page 2 of 157



Heat, Mass, and Momentum Transfer M. Bannerman

Solution:
Assuming the blood is stationary (v1 = v2 = 0) at both ends we have:

1
2
ρ1 �

�7
0

v2
1 + p1 − ρ1 g h1 =

1
2
ρ2 �

�7
0

v2
2 + p2 − ρ2 g h2

p1 − p2

ρg
= h1 − h2

0.13 × 105

1060 × 9.81
≈ 1.25m

Although this seems small considering we’re assuming the flow is stationary (it is less than the
average height in the UK), your heart only has to pump blood upwards from your chest to
your head. Blood within your extremities (arms and legs) is pumped outward by the heart and
is returned in part by the action of your skeletal muscles around your veins (look up skeletal-
muscle pumps for more information). Giraffes have twice the blood pressure of humans.

[Question end]

Question 5Q.5
Write the following expressions in index notation, and state whether the answer is a scalar,
vector, or matrix.

Solution

a) a + b ai + bi (vector)

b) ab ai bj (matrix)

c) c · ab ci ai bj (vector)

d) a · A ai Aij (vector)

e) A · b Aij bj (vector)

f) a2 ai ai (scalar)

g) A2 · b Aij Ajkbk (vector)

h) abc · A · d ai bj ck Akl dl (matrix)

i) ∇ · bc ∂(bi cj)/∂ri (vector)

[Question end]

Question 6Q.6
Given a = [1, 2, 3] and b = [4, 5, 6], calculate the following

Solution

a) a + b [5, 7, 9]

b) 4 a [4, 8, 12]

c) a · b 1 × 4 + 2 × 5 + 3 × 6 = 32

d) a2 12 + 22 + 32 = 14
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e) ∇ · b As all elements of b are constant, its 0

f) ∇b As all elements of b are constant, its

0, 0, 0
0, 0, 0
0, 0, 0


[Question end]

Question 7Q.7
Write the following expressions in vector notation.

Solution

a) al bj ab

b) ak bk a · b

c) bj Aij ai a · A · b

d) ai bj ck abc

e) ai bj ai a2b

f) ai (∂bj/∂ri) a · ∇b

[Question end]

Question 8Q.8
The del operator (∇ = ∂/∂ri) is a “vector” version of the derivative. Like the normal derivative
operation, it has a product rule. Prove the following identity:

∇ · ab = b∇ · a + a · ∇b

Hint: Use index notation, treat ai and bi as functions of x , y , z, and use the normal product
rule!
Solution:
Working in Cartesian coordinates (x,y,z) we can use index notation,

∇ · ab = ∇i ai bj

We can expand the del operator into index notation ∇i = ∂/∂ri . This gives

∇ · ab =
∂ai bj

∂ri

We can use the normal product rule, as it doesn’t matter what values are i or j are (they don’t
affect how the derivative operation will proceed). If you don’t believe this, write out the full
vector representation and follow it through. Applying the product rule, we have:

∇ · ab =
∂ai bj

∂ri

= bj
∂ai

∂ri
+ ai

∂bj

∂ri

And going back to vector notation, we have the answer!

∇ · ab = bj
∂ai

∂ri
+ ai

∂bj

∂ri

= b∇ · a + a · ∇b
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This tutorial question shows that it’s easy and powerful to work with index notation (it works
almost like normal scalar calculus). You can easily find other identities like this one

∇2 f g = f ∇2 g + 2(∇ f ) · (∇g) + g ∇2 f

[Question end]

Question 9Q.9
Using index notation, prove the following vector calculus identity:

∇2 f g = f ∇2 g + 2(∇ f ) · (∇g) + g ∇2 f

[5 marks]
Note: You must treat f and g as functions of x , y , z.
Solution:
Converting to index notation in Cartesian coordinates (x,y,z),

∇2 f g =
∂

∂ri

(
∂

∂ri
f g
)

✓
1 We can’t use ∂2/∂r 2

i as there is no repeated i index. Using the product rule on the term in[1/5]
parenthesis

∂

∂ri
f g = f

∂g
∂ri

+ g
∂f
∂ri

✓
1 Using the product rule again to apply the second derivative to both of these terms gives[1/5]

∂

∂ri

∂

∂ri
f g =

∂f
∂ri

∂g
∂ri

+ f
∂

∂ri

∂g
∂ri

+
∂g
∂ri

∂f
∂ri

+ g
∂

∂ri

∂f
∂ri

= f
∂

∂ri

∂g
∂ri

+ 2
∂f
∂ri

∂g
∂ri

+ g
∂

∂ri

∂f
∂ri

✓
2 Converting back to vector notation, yields the identity,[2/5]

∂

∂ri

∂

∂ri
f g = f ∇2 g + 2(∇ f ) · (∇g) + g ∇2 f

✓
1[1/5]

[Question total: 5 marks]

Question 10Q.10
Solve the following integration and differentiation problems:
Solution

a)
∫

r dr r r3

2 + C1 r

b)
∫∫

θ dθ dr r
(
θ2/2 + C1

)
+ C2

c)
∫ B

A y−1dy ln
(

B
A

)
d)
∫

x sin x dx (hint: by parts) sin x − x cos x + C1

e) ∇ · r where r = [x , y , z] 3

f) ∇r where r = [x , y , z]

1, 0, 0
0, 1, 0
0, 0, 1

 = δij

[Question end]
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Question 11Q.11
Solve the following integration problem by using a variable substitution of η = y/H.∫ H

0

(
A

y2

H2 + B
y
H

)
dy

Solution:
As we have a variable substitution of η = y/H, this yields dy = Hdη. Performing the substitu-
tion, we have: ∫ H

0

(
A

y2

H2 + B
y
H

)
dy = H

∫ 1

0

(
A η2 + B η

)
dη

= H (A/3 + B/2)

If you’ve done this without the substitution, you might notice the variable substitution makes
this integration simpler. You don’t have to use it, but some of the problems you will face
later are significantly easier if you use an appropriate variable substitution. The most obvious
variable substitutions use dimensionless variables (e.g. if y is a position, then H might be a
height, making η dimensionless).

[Question end]

Question 12Q.12
Using a Cartesian control volume (as illustrated in Fig. 1):

Figure 1: A differential balance of flow property B in cartesian coordinates.

a) Derive the general advection-diffusion equation for a property B, including a source term,
σB. [12 marks]
Solution:
In each direction, we can perform a balance of the fluxes, JB. Considering just the x −
direction, in an interval of time ∆t , we have the following fluxes

[INPUT − OUTPUT]x = ∆t ∆y ∆z (JB,x (x , y , z) − JB,x (x + ∆x , y , z))

Where the ∆y ∆z term is the area of flux in the x-direction. Similar expressions can be
generated for the y and z directions. We should also consider the generation of B within
the control volume:

GENERATION = ∆t ∆x ∆y ∆z σB
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where σB is the production of B per unit volume per time. The balance of fluxes, and
generation terms must equal the accumulation/change in concentration over the interval:

ACCUMULATION = ∆x ∆y ∆z ()

Setting these equal, and dividing by the control volume and interval we have

(∆t ∆V )−1 ACCUMULATION = (∆t ∆V )−1 (INPUT − OUTPUT + GENERATION)
CB(t + ∆t) − CB(t)

∆t
= σB − JB,x (x + ∆x) − JB,x (x)

∆x
− JB,y (y + ∆y ) − JB,y (y )

∆y
− ...

Taking all intervals in the limit that they tend to zero, we have

∂CB

∂t
= σB − ∂JB,x

∂x
− ∂JB,y

∂y
− ∂JB,z

∂z

Writing this in vector and index form:

∂CB

∂t
= σB −∇ · JB

b) Set B = mass and derive the continuity equation. [8 marks]
Solution:
For mass, the concentration is the mass density Cmass = ρ. We typically handle systems
where mass is conserved (no nuclear processes), therefore σmass = 0. For the fluxes, there
is only the convective flux, which is Jmass,conv . = ρv as mass diffusion only appears when
considering a single species in a multicomponent fluid, not the overall mass. Inserting these
definitions into the general balance equation we have:

∂ρ

∂t
= −∇ · ρv

or
∂ρ

∂t
+ ∇ · ρv = 0

[Question total: 20 marks]

Question 13Q.13
Using index notation:

a) Write down the continuity equation (Eq. (65)).
Solution:

Note: The answers to these index notation questions have been expanded as much as
possible for your reference! Please do not write such verbose answers yourself ! With a little
bit of practise you should be able to jump straight to the answer. In general, I will not expect
workings out for an index notation question.

The continuity equation fully expanded in Cartesian coordinates is

∂ρ

∂t
= −

(
∇x ρ vx + ∇y ρ vy + ∇z ρ vz

)
If we collect the terms on the right hand side into a sum we can write

∂ρ

∂t
= −

∑
i=x ,y ,z

∇iρ vi
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The summation convention (see the paragraph above) states that in index notation, whenever
an index is repeated within a term a summation is implied. So in index notation the con-
tinuity equation is

∂ρ

∂t
= −∇iρ vi

b) Write down the Cauchy momentum equation.
Solution:
The answer is

ρ
∂vi

∂t
= −ρ vj ∇j vi −∇j τji −∇i p + ρgi

We will now illustrate the connection between index notation and the full explicit “compon-
ent” notation. This is purely an educational exercise, do not write out the expressions
in component notation. The Cauchy momentum equation fully expanded in component
notation is:ρ∂vx

∂t
ρ
∂vy
∂t

ρ∂vz
∂t

 = −

∑j=x ,y ,z ρ vj ∇j vx∑
j=x ,y ,z ρ vj ∇j vy∑
j=x ,y ,z ρ vj ∇j vz

−

∑j=x ,y ,z ∇j τjx∑
j=x ,y ,z ∇j τjy∑
j=x ,y ,z ∇j τjz

−

∇x p
∇y p
∇z p

 +

ρgx

ρgy

ρgz


Again, using the summation convention we can remove all of the sums in the above expres-
sion, as there is always a repeated index j whenever a sum is present!ρ∂vx

∂t
ρ
∂vy
∂t

ρ∂vz
∂t

 = −

ρ vj ∇j vx

ρ vj ∇j vy

ρ vj ∇j vz

−

∇j τjx

∇j τjy

∇j τjz

−

∇x p
∇y p
∇z p

 +

ρgx

ρgy

ρgz


Finally, we can represent the x, y, and z components all at once by using an index which is
not repeated within a single term. Here, the index i is not in use so we can write

ρ
∂vi

∂t
= −ρ vj ∇j vi −∇j τji −∇i p + ρgi

[Question end]

Question 14Q.14
In a plate heat-exchanger, water is heated by forcing it between alternating plates and heat
is exchanged through the walls with a hot process stream. In order to design such an
exchanger, we need to know what the relationship is between pressure drop, flow velocity,
and volumetric flow-rate.
You may neglect the effect of heat transfer on the flow. Water is incompressible and Newto-
nian to a good approximation. For simplicity, you can also assume that the flow is laminar.

a) Simplify the continuity equation for this system:

∂ρ

∂t
= −∇ · ρv

What does your result state about the flow velocity in the x-direction? [4 marks]
Solution:
If the fluid is incompressible (ρ = constant)✓1 , we have:[1/4]
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Figure 2: A plate heat exchanger (left) and the simplification to steady state, pressure driven
flow between two horizontal plates (right).

�
�
���
0

∂ρ

∂t
+ ρ

∂vi

∂ri
= 0

∂vi

∂ri
= 0

✓
1 As the flow is laminar (no turbulence), there will be no flow in the y -direction. We’ve[1/4]
also been told there’s no flow in the z-direction, so we have vz = vy = 0 and the equation
becomes:

∂vx

∂x
= 0 (3)

✓
1 This is a statement that the steady-state velocity profile between the plates does not vary[1/4]
in the x direction.✓1[1/4]

b) Simplify the x-component of the Cauchy momentum equation:

ρ
∂v
∂t

= −ρv · ∇v −∇ · τ −∇ p + ρg

Derive the following balance expression for the flow velocity vx as a function of the pres-
sure drop and position y : [6 marks]

µ
∂2vx

∂y2 =
∂p
∂x

Solution:
Taking the x-component of the Cauchy momentum equation, we can eliminate the time
derivative as we are at steady state✓1 and we can eliminate the gravity term as we are con-[1/6]
sidering horizontal flow✓

1[1/6]

ρ
�
�
��7

0
∂vx

∂t
= −ρ vi

∂vx

∂ri
− ∂τix

∂ri
− ∂

∂x
p + ���*

0
ρgx

0 = −ρ vi
∂vx

∂ri
− ∂τix

∂ri
− ∂p

∂rx
(4)

We demonstrated in the previous question that ∂vx/∂x = 0 and the fact that nothing
changes in the z-direction (its translationally symmetric) tells us that ∂vx/∂z = 0. Thus,
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the only non-zero derivative of vx is ∂vx/∂y ̸= 0. If we examine the first term of Eq. (4), we
find that the only term with a non-zero derivative is

ρ vy
∂vx

∂y

However, vy = 0 and so the whole first term is zero, leaving us with

−∂τix

∂ri
=
∂p
∂x

. (5)

✓
2 Using the definition of Newton’s law (Table. ), we can define τix as:[2/6]

τix = −µ

(
∂vi

∂x
+
∂vx

∂ri

)
We know that vy and vz are zero, and we know that ∂vx/∂x = 0 (see Eq. 3), therefore the
first term is always zero! Inserting this into into our stress balance (Eq. 5) we have

µ
∂

∂ri

∂vx

∂ri
=
∂p
∂x

✓
1 We know that ∂vx/∂x = 0 (see Eq. 3), and we know the velocity doesn’t change in the[1/6]
z direction (∂vx/∂z = 0). Therefore only the i = y term is non-zero, giving us the final
result:✓1[1/6]

µ
∂2vx

∂y2 =
∂p
∂x

c) Continuing from the result of the previous question, derive the following expression for the
velocity vx as a function of y using the no-slip boundary condition at the plate surfaces
(vx = 0 at y = 0 and y = H). [6 marks]

vx =
pout − pin

2µL
(y2 − H y)

Solution:
Taking the result from the previous question, we can immediately integrate both sides over
x: ∫ L

0
µ
∂2vx

∂y2 dx =
∫ L

0

∂p
∂x

dx[
µ
∂2vx

∂y2 x
]x=L

x=0
=
∫ pout

pin

dp

µ
∂2vx

∂y2 =
pout − pin

L

✓
2 We can now integrate both sides by y , twice, to yield[2/6]

vx =
pout − pin

2µL
y2 + C1 y + C2

✓
2 where C1 and C2 are integration constants. From the boundary condition vx = 0 at y = 0,[2/6]
we know the last constant C2 = 0.✓1 From the boundary condition vx = 0 at y = H, we have[1/6]
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C1 = −pout − pin

2µL
H

✓
1 Using this, the final equation becomes[1/6]

vx =
pout − pin

2µL
(y2 − H y)

d) Integrate the velocity over the plate height and width to prove the following expression for
the volumetric flow of liquid through the gap as a function of pressure drop: [4 marks]

V̇x =
Z H3

12µ

∆P
L

Solution:
For volumetric flow in the x direction, we have:

V̇x =
∫ Z

0

∫ H

0
vx dy dz

=
∫ Z

0

∫ H

0

pout − pin

2µL
(y2 − H y) dy dz

= Z
∫ H

0

pout − pin

2µL
(y2 − H y) dy

= Z
pout − pin

2µL

[
y3

3
− H

y2

2

]y=H

y=0

= H3 Z
pin − pout

12µL

V̇x =
Z H3

12µ

∆P
L

✓
4[4/4]

e) Extra credit: Assume that somehow, the top plate is set in motion with a velocity uplate in
the x-direction. Derive the following new expression for the velocity between the plates:

vx =
pout − pin

2µL
(y2 − H y) +

y
H

uplate

Solution:
This is just a re-determination of the integration constants from the answer to the previous
question using the new boundary condition. We had

vx =
pout − pin

2µL
y2 + C1 y + C2

Again, from the boundary condition vx = 0 at y = 0, we know the last constant C2 = 0.
From the boundary condition vx = uplate at y = H, we have

uplate =
pout − pin

2µL
H2 + C1 H

C1 =
uplate

H
− pout − pin

2µL
H

Using this, the final equation becomes

vx =
pout − pin

2µL
(y2 − H y) +

y
H

uplate
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[Question total: 20 marks]

Question 15Q.15
A plate heat exchanger is used to heat water inside a condensing reboiler (a modern central
heating boiler). Water flows through both sides of the exchanger. The exchanger consists
of 8 channels (4 per side) each with a gap of 1 mm between the plates. Plates may be
modelled as 30cm long in the direction of flow and 10 cm wide.

a) If the water pressure drops by 0.06 bar across one side of the exchanger, what is the res-
ultant volumetric flow of water? You may assume an effective viscosity of µ ≈ 0.5 mPa s
and a density of ρ = 1000 kg m−3.
Solution:
In each channel, the volumetic flow is

V̇x = H3 W
pin − pout

12µL

=
(
1 × 10−3)3 0.1

0.06 × 105

12 × 0.5 × 10−3 × 0.3
≈ 0.00033 m3 s−1 ≈ 0.33 l s−1

The total flowrate over all channels is then 4 × 0.33 = 1.32 l s−1.

b) State all of the assumptions that have you made in this estimate.
Solution:
Assumed steady-state, incompressible, well-developed flow (ignoring the entry ports of the

exchanger). Also ignored the effect of changing temperature on the viscosity of the fluid.

c) Is this likely to be an over or under-estimation of the flow rate?
Solution:
The flow rate is likely to be an over-estimation as we have neglected the pressure drop

in the entry and developing flow regions, which can be considerable in such a small flow
geometry. Realistic flow rates are in the order of 0.04 l s−1 for these conditions. Another
source of error is that the model does not include the irregular surfaces used to increase the
mixing and heat transfer area in plate heat exchangers.

[Question end]

Question 16Q.16
Water is overflowing a dam and down an inclined slope (see Fig. 3). The surface of the dam
can be idealised as a rectangular plane which is symmetric in the z-direction, and (for now)
only laminar flow is being considered.

a) Simplify the continuity equation for this system and state any assumptions you make.
[6 marks]

Solution:
Assuming water is incompressible (ρ = constant) and using Cartesian coordinates (x,y,z),
the continuity equation becomes,✓2 :[2/6]

�
�
���
0

∂ρ

∂t
+ ∇ · ρ v⃗ = 0

∇ · v⃗ =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0
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Figure 3: Water flowing down an inclined plane.

✓
1 As the flow is laminar there will be no flow in the y -direction and we’ve also been told the[1/6]
system is symmetric in the z-dimension so there is no reason to believe there is flow in the
z-direction, so we have vz = vy = 0✓

2 and the equation becomes:[2/6]

∂vx

∂x
= 0 (6)

This is a statement that the steady-state velocity profile between the plates does not vary
in the x direction.✓1[1/6]

b) Derive the following results from the Cauchy momentum equation and the general form
of Newton’s law of viscosity: [10 marks]

∂τyx

∂y
= ρgx τyx = −µ

∂vx

∂y
.

Solution:
Taking the x-component of the Cauchy momentum equation, the time derivative can be
cancelled by assuming we are at steady state and the pressure term also cancels, as the
system has a free surface which equalises the pressure along the flow (and we neglect the
atmospheric pressure changes).

ρ
�
�
��7

0
∂vx

∂t
= −ρ vi

∂vx

∂ri
− ∂τix

∂ri
−

�
�
���
0

∂p
∂x

+ ρgx (7)

✓
3[3/10]

Considering the first term and expanding the index notation,

ρ vi
∂vx

∂ri
= ρ vx

�
�
��7

0
∂vx

∂x
+ ρ���

0
vy

∂vx

∂y
+ ρ��>

0
vz

�
�
���
0

∂

∂z
vx

The first term cancels from the continuity equation whereas the others cancel as there is no
flow in those directions. The final term on the right can also cancel due to symmetry in the
z-direction. Thus, this entire term is zero.✓2[2/10]
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The equation now becomes,

∂τix

∂ri
= ρgx (8)

Using the 3D definition of Newton’s law, we can define τix as:

τix = −µ

(
∂vi

∂x
+
∂vx

∂ri

)
+ δixµB����:0∇ · v

✓
1 The final term ∇ · v⃗ = 0 cancels from the continuity equation. We also know that vy and[1/10]
vz are zero, and we know that ∂vx/∂x = 0 from the continuity equation, therefore the first
term is always zero. Only the ∂vx/∂y term is non-zero, thus the expression is

∂τyx

∂y
= ρgx τyx = −µ

∂vx

∂y

✓
4 where we have assumed a Newtonian fluid with constant viscosity.[4/10]

c) Define your boundary conditions and derive the following expression for the velocity pro-
file, [9 marks]

vx =
ρgx

µ

(
Y y − y2

2

)

Solution:
Integrating the equation from the previous slide

τxy = ρgx y + C1

✓
1 At the surface of the flow the stress is negligble due to the low viscosity of air, thus[1/9]
τxy (r = Y ) = 0, and solving for the constant gives the following expression

τxy = ρgx (y − Y )

✓
3 Inserting the expression for the stress and integrating again,[3/9]

vx = −ρgx

µ

(
y2

2
− Y y

)
+ C2.

✓
1 The other boundary condition is the no-slip condition, vx (r = 0) = 0. This gives C2 = 0✓

1[1/9]
[1/9]

vx =
ρgx

µ

(
Y y − y2

2

)
✓
3[3/9]

d) Use an integration of the velocity over the flow area to determine the following expression
for the volumetric flow rate, [6 marks]

V̇x =
ρgx Y 3 Z

3µ
.
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Solution:
For volumetric flow in the x direction, we have:

V̇x =
∫ Z

0

∫ Y

0
vx dy dz

=
∫ Z

0

∫ Y

0

ρgx Y 2

2µ

(
2

y
Y

− y2

Y 2

)
dy dz

= Z
ρgx Y 2

2µ

[
y2

Y
− y3

3 Y 2

]Y

0

=
ρgx Y 3 Z

2µ

[
y2

Y 2 − y3

3 Y 3

]Y

0

=
ρgx Y 3 Z

3µ

✓
6[6/6]

e) Provide an expression for the maximum flow velocity. [2 marks]
Solution:
The maximum velocity in the system is at y = Y , thus vmax = ρgx Y 2/(2µ).✓2[2/2]

[Question total: 33 marks]

Question 17Q.17
Consider pressure-driven flow along a horizontal pipe, as illustrated in Fig. 4.

Figure 4: An illustration of pipe flow.

a) Simplify the continuity equation for this system, what does it tell you about the flow?
Remember to make your assumptions and their effects clear. [6 marks]
Solution:
Assuming either steady-state or incompressible fluid, the time derivative can be eliminated.✓1[1/6]

�
�
���
0

∂ρ

∂t
−∇ · ρv = 0

∇ · ρv = 0

If the fluid is incompressible, the density can be divided out of the expression.✓1[1/6]
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As we’re in cylindrical coordinates, we must look up the result of the gradient operator in
cylindrical coordinates:

∇ · v =
1
r
∂rvr

∂r
+

1
r
∂vθ

∂θ
+
∂vz

∂z
✓
1[1/6]
Assuming the system is rotationally symmetric then ∂/∂θ = 0✓

1 . Assuming well-developed[1/6]
and laminar flow, then vr = 0✓

1 . This leaves the final term:[1/6]
∂vz

∂z
= 0

Which states that the flow velocity in the x-direction is constant✓1 .[1/6]

b) Derive the following differential equation from the Cauchy momentum equation.

1
r
∂

∂r
(rτrz) = −∂p

∂z
Remember to make your assumptions and their effects clear. [7 marks]
Solution:
Starting with the Cauchy momentum equation:

ρ
∂v
∂t

= −ρv · ∇v −∇ · τ −∇p + ρg

Assuming steady state,

0 = −ρv · ∇v −∇ · τ −∇p + ρg
✓
1[1/7]
We’re only interested in the z-direction, so

0 = −ρ [v · ∇v ]z − [∇ · τ ]z −
∂p
∂z

+ ρgz

✓
1[1/7]
As the pipe is horizontal, gz = 0✓

1 .[1/7]
For the first term, we have the following definition from the datasheet for cylindrical co-
ordinates:

[v · ∇v ]z = vr
∂vz

∂r
+

vθ

r
∂vz

∂θ
+ vz

∂vz

∂z
We have ∂vz/∂z = 0 from the first question, and ∂/∂θ = 0 from rotational symmetry✓

1 . The[1/7]
first term is zero as vr = 0 from laminar well-developed flow✓

1 , thus this entire term is zero.[1/7]
Considering the second term, and expanding it from the datasheet:

[∇ · τ ]z =
1
r
∂

∂r
(rτrz) +

1
r
∂τθz

∂θ
+
∂τzz

∂z
We can cancel the middle term from the rotational symmetry ∂/∂θ = 0. The last term
can be cancelled as there is no velocity change in the z-direction (thus no stresses can be
induced)✓2 . Alternatively, each stress term can be individually expanded and eliminated by[2/7]
considering each of the velocities (as is done in a later sub-part of this question for the τrz

term).
Putting this all together yields the final expression.

1
r
∂

∂r
(rτrz) = −∂p

∂z
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c) Determine the following expression for the stress profile.

τrz = −∆p
2 L

r

[3 marks]
Solution:
Performing a definite integral in the z-direction (from z = 0 to z = L), all terms are constant
thanks to the only non-zero velocity being constant, i.e. ∂vz/∂z = 0. This allows a simple
replacement of the pressure drop

1
r
∂

∂r
(rτrz) = −∆p

L

where ∆p = p (z = L) − p (z = 0)✓1 .[1/3]

Performing an indefinite integral in the r direction,∫
∂ r τrz

∂r
dr = −∆p

L

∫
r dr

τrz = −∆p
2 L

r +
C1

r
✓
1[1/3]

As the stress has to be finite in the centre of the pipe then C1 = 0✓
1 . Alternatively, this[1/3]

can also be deduced as the stress must go to zero in the centre of the pipe as it is a line of
symmetry in rz. Cancelling the C1 term gives the final expression:

τrz = −∆p
2 L

r

d) Demonstrate that the velocity profile is as given below.

vz =
∆p

4µL
(
r 2 − R2)

[4 marks]
Solution:
Taking a look in the datasheet for the stress:

τzr = −µ

(
∂vr

∂z
+
∂vz

∂r

)
In this case, vr = 0 due to assuming laminar well-developed flow✓

1 . Inserting this into the[1/4]
above equation,

τrz = −µ
∂vz

∂r
= −∆p

2 L
r

✓
1[1/4]

Integrating in r , ∫
µ
∂vz

∂r
dr =

∫
∆p
2 L

r dr

µ vz =
∆p
4 L

r 2 + C2
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✓
1[1/4]

As the velocity must go to zero at the walls, C2 can be determined,

vz =
∆p

4µL
(
r 2 − R2)

✓
1[1/4]

[Question total: 20 marks]

Question 18Q.18
An annulus (see Fig. 5) is a very common flow configuration where a fluid is flowing between
two concentric pipes. Real examples of annuli include oil and gas wells and concentric-tube
heat-exchangers in air conditioners. A “completed” oil-well may consist of up to 3 annuli
around the central “production” pipe. We need design equations to calculate the relationship
between pressure drop and volumetric flow-rate.

Figure 5: An annular flow geometry.

Assuming we have a steady-state, laminar, incompressible, and well-developed flow inside
an annulus:

a) Demonstrate that the continuity equation simplifies to the following expression.

∂vz

∂z
= 0

State your interpretation of this expression.
Solution:
Note: This question covers all parts of the solution in great detail. Please read it carefully
and use it as a template to fill in any skipped steps for all later solutions.

If the fluid is incompressible (ρ = constant), we can cancel the time derivative and divide
both sides by the density:

�
�
���
0

∂ρ

∂t
+ ∇ · ρv = 0

∇ · v = 0
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Using the definition of ∇ · v in cylindrical coordinates, we have:

1
r
∂

∂r
(r vr ) +

1
r
∂ vθ

∂θ
+
∂ vz

∂z
= 0

If the flow is laminar and well developed, we have vθ = 0 and vr = 0 which leaves us with

1
r
∂

∂r

(
r ��>

0
vr

)
+

1
r
∂��>

0
vθ

∂θ
+
∂ vz

∂z
= 0

∂ vz

∂z
= 0

This is a statement that the steady-state velocity profile does not vary along the pipe axis.

b) Simplify the Cauchy momentum balance equation to yield the following result.

0 = −1
r
∂

∂r
(r τrz) −

∂p
∂z

+ ρgz

Solution:
Taking the z-component of the Navier-Stokes equation, we have:

ρ
∂vz

∂t
= − [ρv · ∇v ]z − [∇ · τ ]z − [∇p]z + ρgz

we can immediately eliminate the time derivative �
��

0
∂vz
∂t as we are at steady state to give us

0 = − [ρv · ∇v ]z − [∇ · τ ]z − [∇p]z + ρgz

We can assume that the first term will disappear as its the advective term and there are
no changes in the direction of flow (it has also disappeared every time before), but we must
prove this. Looking up the expanded definition of the first term we have:

[v · ∇v ]z = ��>
0

vr
∂vz

∂r
+ ��>

0
vθ

r
∂vz

∂θ
+ vz

�
�
��7

0
∂vz

∂z

The terms above can be cancelled as we know that vr = vθ = 0 as the flow is well developed
and the geometry will not allow flow in that direction (so we can immediately delete the first
two terms). We also know the last term is zero from the continuity equation. Eliminating
this whole term gives us the following:

0 = − [∇ · τ ]z − [∇p]z + ρgz

Expanding the left term, we have:

[∇ · τ ]z =
1
r
∂

∂r
(r τrz) +

1
r
∂τθz

∂θ
+
∂ τzz

∂z

We can insert the definitions of each of the stress terms and cancel the terms with vr or vθ

in them or derivatives in z. For example:

τθz = −µ

(
1
r
∂vz

∂θ
+
∂vθ

∂z

)
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The first term cancels as nothing changes in the θ direction (∂vz/∂θ = 0 as the problem is
rotationally symmetric), and the second as vθ = 0. You should note that the two indicies on
the stress always indicate the derivatives and components of the velocity of the two terms.
We can then immediately cancel the τzz term as it is only a function of ∂vz/∂vz or ∇·v , both
of which cancel due to the results of the continuity equation. Only the τrz term remains,
inserting this into the balance along with the definition of [∇p]z :

0 = −1
r
∂

∂r
(r τrz) −

∂p
∂z

+ ρgz

This is the result required.

c) Integrate the equation to express it in terms of the pressure drop over the length of the
annulus. Give reasons why the stress term τrz is independent of z.

∆p
L

= −1
r
∂

∂r
(r τrz) + ρgz

Solution:
Taking the solution to the previous equation

0 = −1
r
∂

∂r
(r τrz) −

∂p
∂z

+ ρgz

We can rearrange it ready for the integration:

∂p
∂z

= −1
r
∂

∂r
(r τrz) + ρgz

Whatever the type of fluid (Newtonian, Power-Law), the viscous stress τrz is a function of
the velocity profile. However, we know that the velocity profile is not a function of the z
direction from the continuity equation (∂vz

∂z = 0). Therefore, the stress τrz is not a function
of z and neither are its derivatives. Gravity and density are also not a function of z. So we
can perform the integration treating the terms on the right as constants, like so∫ z=L

z=0

∂p
∂z

dz =
∫ z=L

z=0

(
−1

r
∂

∂r
(r τrz) + ρgz

)
dz∫ p(L)

p(0)
dp =

[(
−1

r
∂

∂r
(r τrz) + ρgz

)
z
]z=L

z=0

Note: You should note what just happened on the left hand side. This is how all integrations
work, you actually integrate both sides with respect to a variable but if one side is just a
derivative then a change of variables takes place! Make sure you understand this and changes
of variable before proceeding! Carrying out the integration on the left and substituting in
the limits on the right we have:

p(z = L) − p(z = 0) =
(
−1

r
∂

∂r
(r τrz) + ρgz

)
L

∆p
L

= −1
r
∂

∂r
(r τrz) + ρgz

d) Solve the above equation for the stress profile in an annulus using the assumed boundary
condition that the stress is zero at a critical radius r = λR. Prove that it is the following
expression:

τrz =
1
2

(
ρgz −

∆p
L

)(
r − λ2 R2

0

r

)
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Note: The critical radius λR is the location of the maximum velocity, and will be determ-
ined once the viscous model is inserted.
Solution:
Taking the result from the previous question

∆p
L

= −1
r
∂

∂r
(r τrz) + ρgz

rearranging to make it straightforward to integrate

−1
r
∂

∂r
(r τrz) =

∆p
L

− ρgz

Integrating both sides by r :∫
∂

∂r
(r τrz) dr =

∫ (
ρgz −

∆p
L

)
r dr

r τrz =
(
ρgz −

∆p
L

)
r 2

2
+ C

Then dividing both sides by r , we have:

τrz =
(
ρgz −

∆p
L

)
r
2

+
C
r

As stated in the question, at a location r = λR, the stress is zero (τrz = 0). We can then set
r = λR and set τrz = 0 in the previous equation to find an expression for C.

C = −
(
ρgz −

∆p
L

)
λ2 R2

2

Substituting this back into the previous equation we have

τrz =
1
2

(
ρgz −

∆p
L

)(
r − λ2 R2

0

r

)
e) Solve for the velocity profile by assuming the fluid is Newtonian. Try to rearrange the

result of the integration into the following convenient form:

vz = −R2

4µ

(
ρgz −

∆p
L

)(
r 2

R2 − 2λ2 ln
( r

R

)
+ C

)

Solution:
Looking up the definition of the τrz stress from the datasheet tables and substituting it into
the expression we have,

τrz = −µ
∂vz

∂r
=

1
2

(
ρgz −

∆p
L

)(
r − λ2 R2

r

)
Rearranging the equation to have dimensionless terms (not required, just for neater calcu-
lations), we have:

∂vz

∂r
= − R

2µ

(
ρgz −

∆p
L

)(
r
R

− λ2 R
r

)
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Performing the integration in r (and skipping over the whole change of variables from before),
we have:

vz = − R
2µ

(
ρgz −

∆p
L

)∫ (
r
R

− λ2 R
r

)
dr

= − R
2µ

(
ρgz −

∆p
L

)(
r 2

2 R
− λ2 R ln r + C1

)
= −R2

4µ

(
ρgz −

∆p
L

)(
r 2

R2 − 2λ2 ln r +
2 C1

R

)
As C1 is an unknown integration constant, we can freely write it in terms of another unknown
integration constant C2

2 C1

R
= C2 + 2λ2 ln R

Note: This is a common “trick”, you can pull any constant terms you like out of an unknown
constant! Its very useful for tidying up equations.

This allows us to simplify the above equation further to

vz = −R2

4µ

(
ρgz −

∆p
L

)(
r 2

R2 − 2λ2 ln
( r

R

)
+ C2

)
This is simpler as each term has a dimensionless r/R variable. In fact, all logarithmic
terms should always have dimensionless arguments!

f) Using the no slip boundary condition at r = R and r = κR, solve for the unknown con-
stants C and λ in the above equation and generate the final expression.
Solution:
Starting with vz = 0 at r = R, we have

1 + C = 0

thus C = −1 and for vz = 0 at r = κR we have

κ2 − 2λ2 lnκ− 1 = 0

Rearranging we have

2λ2 =
κ2 − 1

lnκ

substituting these constants back in to the final result we have

vz = −R2

4µ

(
ρgz −

∆p
L

)(
r 2

R2 − κ2 − 1
lnκ

ln
( r

R

)
− 1
)

[Question end]
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Figure 6: A sketch of the evaporative cooler

Question 19Q.19
An evaporative cooler is sketched in Fig. 6. The process functions by first pumping water up
a vertical pipe and then allowing it to flow down the exterior of the pipe. The properties of
the external film flow are essential for the design of such a cooler.

a) Simplify the continuity equation for this system. What are your assumptions and what
does your result tell you about the flow along the pipe? [5 marks]
Solution:
If the fluid is incompressible, we have

�
�
���
0

∂ρ

∂t
+ ∇ · ρv = 0

If the fluid is incompressible (ρ = constant), we can divide both sides by the density to yield

∇ · v = 0

It’s not straightforward to use index notation in curvelinear coordinates, so we resort to
looking up the definitions in the tables in the datasheet. In cylindrical coordinates,

∇ · v =
1
r
∂

∂r
(r vr ) +

1
r
∂ vθ

∂θ
+
∂ vz

∂z
If the flow is laminar and the flow is well developed, the flow in the θ and r directions must
be zero, vr = vθ = 0. This leaves us with

∇ · v =
1
r
∂

∂r

(
r ��>

0
vr

)
+

1
r
∂��>

0
vθ

∂θ
+
∂ vz

∂z
= 0

∂vz

∂z
= 0
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This is a statement that the steady-state velocity profile does not vary along the pipe axis.

b) Derive the following equation for the stress profile from the general momentum balance
equation (Eq. (67)). State any additional assumptions you make.

1
r
∂

∂r
(r τrz) = ρgz

[6 marks]
Solution:
We are interested in the flow in the z direction, so we should take the z-component of the
Navier-Stokes equation

ρ
∂vz

∂t
= −ρ [v · ∇v ]z − [∇ · τ ]z − [∇p]z + ρgz

we can immediately eliminate the time derivative �
��

0
∂vz
∂t as we are at steady state to give us

−ρ [v · ∇v ]z − [∇ · τ ]z − [∇p]z + ρgz = 0

We can also cancel the pressure term as this is film flow, and the system is open to the air.

−ρ [v · ∇v ]z − [∇ · τ ]z + ρgz = 0

The first term always disappears in this course as we are treating incompressible flow. To
demonstrate this, we look up this term in the datasheet:

[v · ∇v ]z = vr
∂vz

∂r
+

vθ

r
∂vz

∂θ
+ vz

∂vz

∂z

We know that vr = vθ = 0 as the flow is well developed and the geometry will not allow flow
in that direction so we can immediately delete the first two terms. We also know from the
continuity equation that ∂vz/∂z = 0, thus this entire term is zero. Next we consider the
stress term. Looking it up in the datasheet,

[∇ · τ ]z =
1
r
∂

∂r
(r τrz) +

1
r
∂τθz

∂θ
+
∂ τzz

∂z

Please see the previous question for a full explanation of the steps here. Wherever there is
symmetry in well-developed flow, the stresses must be zero. We note that the problem is
rotationally symmetric in θ and we have vθ = 0, thus τθz = 0. From the continuity equation
we have ∇z vz = 0 and ∇ · v thus τzz . Cancelling those terms leaves

1
r
∂

∂r
(r τrz) = ρgz

c) Solve the equation for the stress profile to obtain the following velocity profile for the flow.

vz =
ρg R2

4µ

(
1 −

( r
R

)2
+ 2λ2 ln

( r
R

))
[9 marks]

Solution:
Take the answer to the previous question and substitute in the r component of the gradient
operator to give

1
r
∂ r τrz

∂r
= ρgz
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We can integrate this expression to yield

τrz =
ρgz

2
r +

C1

r

We can solve for this using the boundary condition that the stress is zero at a free surface,
τrz = 0 at r = λR

C1 = −ρgz λ
2 R2

2

τrz =
ρgz

2

(
r − λ2R2

r

)
Now we substitute in Newton’s law of viscosity to obtain

−µ
∂vz

∂r
=
ρgz

2

(
r − λ2 R2

r

)
Integrating we have

vz = −ρgz

2µ

(
r 2

2
− λ2 R2 ln r + C2

)
To determine the constant, we use the no-slip boundary condition vz = 0 at r = R

C2 = λ2 R2 ln R − R2

2

Inserting the expression and tidying up

vz = −ρgz

2µ

(
r 2

2
− λ2 R2 ln r + λ2 R2 ln R − R2

2

)
=
ρg R2

4µ

(
1 −

( r
R

)2
+ 2λ2 ln

( r
R

))
[Question total: 20 marks]

Question 20Q.20
A Couette viscometer tests the viscous behaviour of a fluid using rotational shear in an
annulus (see Fig. 7). The fluid is sheared by rotating the outer wall at an angular velocity
of Ωθ, giving vθ(r = R) = Ωθ R. The inner cylinder is held stationary, giving vθ(r = κR) = 0.
There is no flow along the axis of the annulus.

a) Derive the following expression by solving the continuity equation, given in Eq. (65), for
this system.

∂vθ

∂θ
= 0 (9)

Clearly state any assumptions you make. What does this tell you about the flow? [5 marks]

Solution:
The continuity equation is

∂ρ

∂t
+ ∇ · ρv = 0
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Figure 7: A simplified diagram of a Couette viscometer.

If we assume the fluid is incompressible, we can cancel the first term and divide out the
density to yield

∇ · ρv = 0

∇ · v =
1
r
∂

∂r
(r vr ) +

1
r
∂ vθ

∂θ
+
∂ vz

∂z
= 0

where we’ve expanded the gradient operator in cylindrical coordinates. We assume that the
flow is well-developed and we can cancel any flow in the z and r directions to yield

∂vθ

∂θ
= 0

This indicates that the flow does not change in the θ-direction (it is rotationally symmetric).

b) The velocity profile of the system is given by the following expression:

vθ = Ω0 R
κR

r − r
κR

κ− 1/κ
(10)

Derive the following expression for the stress profile in the system.

τrθ = 2
µΩ0 κ

2

κ2 − 1
R2

r 2 (11)

[10 marks]
Solution:
From the datasheet, we know the stress is given by

τrθ = −µ

(
r
∂

∂r

(vθ

r

)
+

1
r
∂vr

∂θ

)
We can cancel the radial velocity term as the flow is well-developed.

τrθ = −µ r
∂

∂r

(vθ

r

)
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Inserting in Eq. (10), we have

τrθ = −µ r
∂

∂r

(
1
r
Ω0 R

κR
r − r

κR

κ− 1/κ

)

= − µΩ0 R
κ− 1/κ

r
∂

∂r

(
1
r

(
κR
r

− r
κR

))
= − µΩ0 R

κ− 1/κ
r
∂

∂r

(
κR
r 2 − 1

κR

)
= − µΩ0 R

κ− 1/κ
r
(
−2κR

r 3 + 0
)

= 2
µΩ0 R
κ− 1/κ

κR
r 2

= 2
µΩ0 κ

2

κ2 − 1
R2

r 2

c) Derive the following expression for the torque exerted on the outer surface (r = R) to keep
the fluid in motion.

T = 4π R2 L
µΩ0 κ

2

κ2 − 1

where L is the length of the viscometer.
Note: The torque is the total magnitude of a tangential force, such as the viscous stress
τrθ, multiplied by the radial distance at which it acts. [3 marks]
Solution:
Take the expression for the stress and calculate it at the outer surface r = R, to give

τrθ = 2
µΩ0 κ

2

κ2 − 1 �
�
���
1

R2

R2

The surface area of the outer cylinder is 2 π R L, thus the total force exerted on that face is

4π R L
µΩ0 κ

2

κ2 − 1

The torque is then

T = 4π R2 L
µΩ0 κ

2

κ2 − 1

d) The torque is measured during the operation of the viscometer. How are the viscous
properties of the flow determined? [2 marks]
Solution:
The torque is directly proportional to the viscosity of the system, thus the answer to the
previous question may be used to directly determine it.

Extra credit if the student notes that the stress profile is not linear in the system, as this
makes it difficult to solve for the properties of non-Newtonian fluids.

[Question total: 20 marks]
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Figure 8: Flow of water within a vertical annulus.

Question 21Q.21
Coil-tubing is being removed from an oil and gas well. This may be modelled as a cylindrical
rod, radius R1, moving upwards along the axis of a vertical cylindrical tube with inner radius
R2, at velocity, U (see Fig. 8). Water flows freely in the annular gap between the rod and the
tube wall.
Note: You may ignore the effects of pressure gradients in this question.

a) Define the coordinate system you will use and the boundary conditions of the flow.
[3 marks]

Solution:
A cylindrical coordinate system will be the most convenient for this system as there is an
axis of symmetry. There are three coordinates in a cylindrical flow, r , θ, and z. The axial
z-direction will be the vertical direction in this case. We will only consider flow in the
z-direction.

There are two non-slip boundary conditions for the flow in the z-direction.

vz(r = R1) = U vz(r = R2) = 0

b) Simplify the continuity equation for this system. What are your assumptions and what
does your result tell you about the flow along the annulus? [4 marks]
Solution:
If the fluid is incompressible, we have

�
�
���
0

∂ρ

∂t
+ ∇ · ρv = 0

If the fluid is incompressible (ρ = constant), we can also divide both sides by the density to
yield

∇ · v = 0

It’s not straightforward to use index notation in curvelinear coordinates, so we resort to
looking up the definitions in the tables in the datasheet. In cylindrical coordinates,

∇ · v =
1
r
∂

∂r
(r vr ) +

1
r
∂ vθ

∂θ
+
∂ vz

∂z
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If the flow is laminar and the flow is well developed, the flow in the θ and r directions must
be zero, vr = vθ = 0. This leaves us with

∇ · v =
1
r
∂

∂r

(
r ��>

0
vr

)
+

1
r
∂��>

0
vθ

∂θ
+
∂ vz

∂z
= 0

∂vz

∂z
= 0

This is a statement that the steady-state velocity profile does not vary along the axis.

c) Derive the following balance equation for the momentum. You may assume that water
is a Newtonian fluid, the flow is well developed, at steady state, and that any effect of
pressure can be ignored. [5 marks]

1
r
∂

∂r
(r τrz) = ρgz

Solution:
We are interested in the flow in the z direction, so we should take the z-component of the
Navier-Stokes equation

ρ
∂vz

∂t
= −ρ [v · ∇v ]z − [∇ · τ ]z − [∇p]z + ρgz

we can immediately eliminate the time derivative �
��

0
∂vz
∂t as we are at steady state AND cancel

the pressure term as we are allowed to ignore it in this particular case to give us

−ρ [v · ∇v ]z − [∇ · τ ]z + ρgz = 0

The first term always disappears in this course as we are treating incompressible flow. To
demonstrate this, we look up this term in the datasheet:

[v · ∇v ]z = vr
∂vz

∂r
+

vθ

r
∂vz

∂θ
+ vz

∂vz

∂z

We know that vr = vθ = 0 as the flow is well developed and the geometry will not allow
flow in that direction so we can immediately delete the first two terms. We also know from
the continuity equation that ∂vz/∂z = 0, thus this entire term is zero.Next we consider the
stress term. Looking it up in the datasheet,

[∇ · τ ]z =
1
r
∂

∂r
(r τrz) +

1
r
∂τθz

∂θ
+
∂ τzz

∂z

Wherever there is symmetry in well-developed flow, the stresses must be zero. We note that
the problem is rotationally symmetric in θ and we have vθ = 0, thus τθz = 0. From the
continuity equation we have ∇z vz = 0 and ∇·v = 0 thus τzz . Cancelling those terms leaves

1
r
∂

∂r
(r τrz) +

1
r
∂��*0
τθz

∂θ
+
∂��*0
τzz

∂z
= ρgz

1
r
∂

∂r
(r τrz) = ρgz
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d) Derive the following expression for the velocity profile of the fluid within the tube. [4 marks]

vz = −ρgz r 2

4µ
+

C1

µ
ln r + C2

where C1 and C2 are unknown integration constants.
Solution:
As the fluid is Newtonian, τrz = −µ

(
∂vz
∂r + ∂vr

∂z

)
. The last term is zero as vr = 0 if the flow is

well-developed. Inserting this expression into the result of the previous equation

1
r
∂

∂r

(
r µ

∂vz

∂r

)
= −ρgz

Starting with the equation from the previous question, we have

1
r
∂

∂r

(
r µ

∂vz

∂r

)
= −ρgz

∂

∂r

(
r µ

∂vz

∂r

)
= −r ρgz

r µ
∂vz

∂r
= − r 2

2
ρgz + C1

∂vz

∂r
= − r ρgz

2µ
+

C1

µ r

vz = −ρgz r 2

4µ
+

C1

µ
ln r + C2

e) Using the boundary conditions, solve for the constants C1 and C2. [2 marks]
Solution:
Using the boundary conditions from the first question, we have

vz(r = R1) = U vz(r = R2) = 0

U = −R2
1

4µ
ρgz +

C1

µ
ln R1 + C2 0 = −R2

2

4µ
ρgz +

C1

µ
ln R2 + C2

We can solve these for the constants C1 and C2.

C2 =
R2

2

4µ
ρgz −

C1

µ
ln R2

U = −R2
1

4µ
ρgz +

C1

µ
ln R1 +

R2
2

4µ
ρgz −

C1

µ
ln R2

=
R2

2 − R2
1

4µ
ρgz +

C1

µ
ln (R1/R2)

C1 =
µU

ln (R1/R2)
− R2

2 − R2
1

4 ln (R1/R2)
ρgz

C2 =
R2

2

4µ
ρgz −

C1

µ
ln R2

=
R2

2

4µ
ρgz −

U ln R2

ln (R1/R2)
+ ln R2

R2
2 − R2

1

4µ ln (R1/R2)
ρgz
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We will later use the dimensionless variable λ = R2/R1, so it will be convenient to rewrite
the constants now using the following identites, ln R1/R2 = − ln R2/R1 = − lnλ

C1 = − µU
ln (R2/R1)

+
R2

2 − R2
1

4 ln (R2/R1)
ρgz

C2 =
R2

2

4µ
ρgz +

U ln R2

ln (R2/R1)
− ln R2

R2
2 − R2

1

4µ ln (R2/R1)
ρgz

Substituting back into the original equation, we have

vz =
ρgz

(
R2

2 − r 2
)

4µ
− U

ln (R2/R1)
ln (r/R2) +

R2
2 − R2

1

4µ ln (R2/R1)
ρgz ln (r/R2)

vz =
ρgz

4µ

(
R2

2 − r 2 +
ln (r/R2)

(
R2

2 − R2
1

)
ln (R2/R1)

)
− U

ln (R2/R1)
ln (r/R2)

To clean this up, we move to a variable λ = R2/R1.

vz =
ρgz

4µ

(
R2

2 − r 2 +
ln (r/R2)

(
R2

2 − R2
1

)
lnλ

)
− U

lnλ
ln (r/R2)

=
ρgz

4µ

(
R2

2 − r 2 +
ln ((r/R1)/λ)

(
R2

2 − R2
1

)
lnλ

)
− U

lnλ
ln ((r/R1)/λ)

=
ρgz

4µ

(
R2

2 − r 2 − R2
2 + R2

1 +
ln (r/R1)

(
R2

2 − R2
1

)
lnλ

)
+ U

(
1 − ln (r/R1)

lnλ

)
=
ρgz R2

1

4µ

(
1 − r 2

R2
1

+
(
λ2 − 1

) ln (r/R1)
lnλ

)
+ U

(
1 − ln (r/R1)

lnλ

)
f) After using the boundary conditions to solve for the constants C1 and C2, the velocity

profile was determined to be

vz =
ρgz R2

1

4µ

(
1 − r 2

R2
1

+
(
λ2 − 1

) ln (r/R1)
lnλ

)
+ U

(
1 − ln (r/R1)

lnλ

)
where λ = R2/R1. What is the average velocity of water in the annulus?
Note: You may need the integration identity∫

x ln(x) dx =
x2

2

(
ln(x) − 1

2

)

Solution:
We need to find expression for the volumetric flow rate V̇z and the velocity U at which the
volumetric flow rate is zero. The volumetric flow rate is given by

V̇z =
∫ R2

R1

2π r vz dr

=
π ρgz R2

1

2µ

∫ R2

R1

(
r − r 3

R2
1

+
(
λ2 − 1

) r ln (r/R1)
lnλ

)
dr + 2 π U

∫ R2

R1

(
r − r ln (r/R1)

lnλ

)
dr
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Making a change of variables x = r/R1, giving dr = R1 dx

V̇z =
π ρgz R4

1

2µ

∫ λ

1

(
x − x3 +

(
λ2 − 1

) x ln x
lnλ

)
dx + 2 π U R2

1

∫ λ

1

(
x − x ln x

lnλ

)
dx

=
π ρgz R4

1

4µ

[
x2 − x4

2
+

x2
(
λ2 − 1

)
lnλ

(
ln x − 1

2

)]λ
1

+ π U R2
1

[
x2 − x2

lnλ

(
ln x − 1

2

)]λ
1

Need more lines!

V̇z =
π ρgz R4

1

4µ

(
λ2 − 1 − λ4 − 1

2
+
λ2
(
λ2 − 1

)
lnλ

(
lnλ− 1

2

)
+
λ2 − 1
2 lnλ

)

+ π U R2
1

(
λ2 − 1 − λ2

lnλ

(
lnλ− 1

2

)
− 1

2 lnλ

)
Factoring out a λ2 − 1 term in the first term, and simplifying the second. . .

V̇z =
π ρgz R4

1

4µ

(
λ2 − 1

)(
1 − λ2 + 1

2
+

λ2

lnλ

(
lnλ− 1

2

)
+

1
2 lnλ

)
+ π U R2

1

(
λ2 − 1
2 lnλ

− 1
)

Simplifying the first, and back to single line equations

V̇z =
π ρgz R4

1

8µ

(
λ2 − 1

)(
1 + λ2 − λ2 − 1

lnλ

)
+ π U R2

1

(
λ2 − 1
2 lnλ

− 1
)

The average velocity is given by the flow-rate divided by the flow area A = π(R2
2 − R2

1) =
π R2

1(λ2 − 1)

⟨vz⟩ =
V̇z

A
=
ρgz R2

1

8µ

(
1 + λ2 − λ2 − 1

lnλ

)
+

U
λ2 − 1

(
λ2 − 1
2 lnλ

− 1
)

g) Given a flow system with dimensions of R1 = 10 mm and R2 = 11 mm, at what speed, U,
does the rod need to be moved upwards so that there is no net upwards or downwards
flow of the fluid? Water has a viscosity of µ = 8.9 × 10−4 Pa s and a density of ρ =
1000 kg m−3. The z-component of gravity is given by gz = −9.81 m s−2. The average
flow velocity in the annulus is given by

⟨vz⟩ =
ρgz R2

1

8µ

(
1 + λ2 − λ2 − 1

lnλ

)
+

U
λ2 − 1

(
λ2 − 1
2 lnλ

− 1
)

where λ = R2/R1. [2 marks]
Solution:
We need to find the velocity where the volumetric flow rate is zero. The volumetric flow
rate is given by the average velocity times by the cross-sectional area of the flow V̇ = ⟨vz⟩ A.
This means that the average velocity must be zero if the net flow is zero.
Rearranging the above expression for the velocity U and setting ⟨vz⟩ = 0, we have

U = −
ρgz R2

1

(
λ2 − 1

)
8µ

(
1 + λ2 − λ2 − 1

lnλ

)(
λ2 − 1
2 lnλ

− 1
)−1

= −
1000 × 9.81 × 0.012

(
1.12 − 1

)
8 × 8.9 × 10−4

(
1 + 1.12 − 1.12 − 1

ln 1.1

)(
1.12 − 1
2 ln 1.1

− 1
)−1

≈ 1.90 m s−1

6th December 2023 Page 32 of 157



Heat, Mass, and Momentum Transfer M. Bannerman

h) Given a flow system with dimensions of R1 = 50 mm and R2 = 51 mm, at what speed, U,
does the rod need to be moved upwards so that there is no net upwards or downwards
flow of the fluid? Water has a viscosity of µ = 8.9 × 10−4 Pa s and a density of ρ =
1000 kg m−3. The z-component of gravity is given by gz = −9.81 m s−2. [2 marks]
Solution:
As above, but

U ≈ 1.849 m s−1

[Question total: 22 marks]

Question 22Q.22
Oil is used to lubricate two horizontal parallel plates by injecting it and allowing it to flow
radially outwards from the point of injection (see Fig. 9). The fluid is flowing radially as there
is a pressure difference of P1 − P2 between the inner and outer radii r1 and r2 respectively.

Figure 9: Radial flow between two plates.

a) Simplify the continuity equation to demonstrate that r vr is a function of z only. [5 marks]
Solution:
Assume the oil is incompressible:

�
�
��7

0
∂ ρ

∂t
= −∇ · ρv

∇ · v = 0

In cylindrical coordinates:

∇ · v =
1
r
∂

∂r
(r vr ) +

1
r
∂ vθ

∂θ
+
∂ vz

∂z

If the flow is laminar and well-developed by the time it reaches r1, then we can state that
vθ = 0 and vz = 0. This gives

∂

∂r
(r vr ) = 0

Which implies that r vr is a constant of r (i.e., independent of r). Note that this implies
that the velocity is proportional to the inverse of the radius (i.e., vr ∝ r−1)! There is no
reason to believe the system will not also be rotationally symmetric in θ, therefore r vr must
only be a function of z.
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b) Demonstrate that the stress profile within the channel is a solution of the following equa-
tion: [10 marks]

ρ vr
∂vr

∂r
= µ

(
2
∂2vr

∂r 2 +
2
r
∂vr

∂r
− 2 vr

r 2 +
∂2vr

∂z2

)
− ∂ p

∂r

Note You must be careful during your derivation and make sure you expand each term of
τ before cancellation.
Solution:
Take the Cauchy momentum equation:

ρ
∂ v
∂t

= −ρv · ∇v −∇ · τ −∇ p + ρg

Assume steady state:

ρv · ∇v = −∇ · τ −∇ p + ρg

Taking the r -component

[ρv · ∇v ]r = − [∇ · τ ]r − [∇p]r + ρ���
0

gr

Where the gravity term is dropped as the plates are horizontal. Inserting the relevant
definition for cylindrical flow for the left hand side:

[ρv · ∇v ]r = ρ

vr
∂vr

∂r
+ ��>

0
vθ

r
∂vr

∂θ
− �

�7
0

v2
θ

r
+ ��>

0
vz

∂vr

∂z


= ρ vr

∂vr

∂r
For the stress term, we have:

[∇ · τ ]r =
1
r
∂

∂r
(r τrr ) +

1
r
∂ τrθ

∂θ
− 1

r
τθθ +

∂ τrz

∂z
We know that vθ = 0 and vz = 0 as the flow is assumed to be well developed. From symmetry
we also know that the derivative in the θ direction is also zero. We also know that ∇·v = 0
from the continuity equation. Expanding each term of the stress:

τrr = −2µ
∂vr

∂r
+ µB ����:0∇ · v

τrθ = −µ

r
∂

∂r

(
��>

0
vθ

r

)
+

1
r �

�
���
0

∂

∂θ
vr


τθθ = −2µ

(
1
r
∂��>

0
vθ

∂θ
+

vr

r

)
+ µB ����:0∇ · v

τrz = −µ

(
∂vr

∂z
+
∂��>

0
vz

∂r

)
Inserting these definitions back in, we have

[∇ · τ ]r = −µ

(
2
r
∂

∂r

(
r
∂vr

∂r

)
− 2 vr

r 2 +
∂2vr

∂z2

)
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Placing these back in the stress equation, we have:

ρ vr
∂vr

∂r
= µ

(
2
r
∂

∂r

(
r
∂vr

∂r

)
− 2 vr

r 2 +
∂2vr

∂z2

)
− ∂ p

∂r

Performing the product rule:

ρ vr
∂vr

∂r
= µ

(
2
∂2vr

∂r 2 +
2
r
∂vr

∂r
− 2 vr

r 2 +
∂2vr

∂z2

)
− ∂ p

∂r

End of question solution

The next part is just for revision to show the link to the next section.

We note that:

2
∂

∂r
1
r
∂

∂r
r vr = 2

∂2vr

∂r 2 +
2
r
∂vr

∂r
− 2 vr

r 2

As r vr is only a function of z, then this equation is zero giving:

ρ vr
∂vr

∂r
= µ

∂2vr

∂z2 − ∂ p
∂r

As we know that r vr = f (z), we make the replacement vr = f (z)/r .

ρ
f
r
∂f r−1

∂r
= µ

1
r
∂2f
∂z2 − ∂ p

∂r
The left hand side simplifies:

ρ
f
r
∂f r−1

∂r
= ρ

f
r

r−1

�
�
���
0

∂f
∂r

− f r−2


= −ρ

f 2

r 3

Which gives:

−ρ
f 2

r 3 = µ
1
r
∂2f
∂z2 − ∂ p

∂r
This equation is difficult to solve, in fact, there is no solution unless we neglect the non-linear
term. This is one instance of the creeping flow assumption.

r
∂ p
∂r

= µ
∂2f
∂z2

At this point we assume the pressure is only a function of r , and then as both sides are
independent of each other they must be constants. Integrating with respect to r :

∆P
ln(r2/r1)

= µ
∂2f
∂z2

Now integrating twice with respect to z:

f = − ∆P
2µ ln(r2/r1)

(
z2 + C1 z + C2

)
vr = −r−1 ∆P

2µ ln(r2/r1)
(
z2 + C1 z + C2

)
6th December 2023 Page 35 of 157



Heat, Mass, and Momentum Transfer M. Bannerman

c) Using the creeping flow assumption, the following expression for the velocity profile was
derived [5 marks]:

vr = −r−1 ∆P
2µ ln(r2/r1)

(
z2 + C1 z + C2

)
Determine the integration constants C1 and C2, and give the final expression for the
velocity profile:
Solution:
As vr = 0 at z = ±b, we have C1 = 0 and C2 = −b2. The final expression is

vr = r−1 ∆P
2µ ln(r2/r1)

(
b2 − z2)

[Question total: 20 marks]

Question 23Q.23
A wire-coating die consists of a cylindrical wire of radius, κR, moving horizontally at a con-
stant velocity, vwire, along the axis of a cylindrical die of radius, R. You may assume the
pressure is constant within the die (it is not pressure driven flow) but the flow is driven by the
motion of the wire (it is “axial annular Couette flow”). Neglect end effects and assume an
isothermal system.

Figure 10: A diagram of a wire coating die for Q. 23.

a) State the two relevant boundary conditions for the flow within the die and how they arise.
[2 marks]

Solution:
Both conditions arise from non-slip conditions of the fluid with a solid boundary.✓1[1/2]

• vz(r = R) = 0: At the die wall interface.

• vz(r = κR) = vwire: At the wire interface.
[1/2]

✓
1

b) The stress profile for an annular system is of the following form

1
r
∂

∂r
r τrz = −∂p

∂z
+ ρgz .

Derive the following expression for the flow profile

vz =
vwire

lnκ
ln
( r

R

)
.
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[9 marks]
Solution:
There is no driving pressure gradient, and as the flow is horizontal, the two terms on the
right hand side are zero

1
r
∂

∂r
r τrz = −

�
�
���
0

∂p
∂z

+ ρ��>
0

gz .

✓
2[2/9]

Performing the integration of the stress profile,

τrz =
C1

r
.

✓
1[1/9]

Assuming the fluid is Newtonian, we have

−µ
∂vz

∂r
=

C1

r
.

✓
1[1/9]

Performing the integration

vz = −µ−1 C1 ln r + C2.

✓
1[1/9]

Inserting the two boundary conditions yields the following

0 = −µ−1 C1 ln R + C2.

vwire = −µ−1 C1 lnκR + C2.

✓
1[1/9]

Solving both equations for the constants,

C2 = µ−1 C1 ln R

vwire = µ−1 C1(ln R − lnκR)

C1 = −µ vwire

lnκ
.

✓
2[2/9]

Inserting these back in gives the final expression

vz =
vwire

lnκ
ln
( r

R

)
✓
1[1/9]
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c) Derive the following expression for the volumetric flow-rate of liquid through the die

V̇z = −π R2 vwire

(
κ2 +

1 − κ2

2 lnκ

)
.

[5 marks]
Note: You will need the integration identity∫

x ln(x) dx =
x2

2

(
ln(x) − 1

2

)
.

Solution:
To determine the volumetric flow rate, the following integration is performed

V̇z = 2π

∫ R

κR
r vz dr

✓
1[1/5]

Performing the integration

V̇z = 2π R
vwire

lnκ

∫ R

κR

r
R

ln
( r

R

)
dr

=
2π R2 vwire

lnκ

∫ 1

κ

x ln (x) dx

=
2π R2 vwire

lnκ

[
x2

2

(
ln x − 1

2

)]1

κ

= −2 π R2 vwire

lnκ

(
κ2

2

(
lnκ− 1

2

)
+

1
4

)
= −π R2 vwire

(
κ2 +

1 − κ2

2 lnκ

)
✓
4[4/5]

d) Derive an expression for the outer radius of the coating, Rcoat ., far away from the die exit.
[4 marks]

Solution:
Solving the stress balance again but for the film coating the wire, the following expression
is found again for the stress

τrz =
C1

r

At the exposed surface of the film (r ̸= 0), the stress is zero (assuming the air exerts close
to zero drag). This implies that C1 = 0 as well, as it is the only possible way to set the RHS
to zero at finite values of r . As the stress is zero, Newton’s law of viscosity then implies the
film has a constant velocity which will be the velocity of the wire (note, the diagram gives
the student a strong hint that this is true).✓2[2/4]

The volumetric flowrate of the wire coating is related to the outer radius of the coating,
Rcoat .

V̇z,coating = vwire π
(
R2

coat . − κ2 R2)
6th December 2023 Page 38 of 157



Heat, Mass, and Momentum Transfer M. Bannerman

✓
1 This must be equal to the volumetric flowrate of coating through the die[1/4]

vwire π
(
R2

coating − κ2 R2) = −π R2 vwire

(
κ2 +

1 − κ2

2 lnκ

)
Rcoating = R

√
κ2 − 1
2 lnκ

✓
1[1/4]

[Question total: 20 marks]

Question 24Q.24
A solid wire is being used to carry electrical current (see Fig. 11).

Figure 11: A representation of a solid wire (right) used as a high-power transmission line
(left).

a) You may assume that heat is generated constantly within the volume of the wire at the
following rate,

σcurrent
energy =

I2

ke
.

Simplify the differential energy balance equation for this system to the following form,

1
r
∂

∂r
(r qr ) =

I2

ke

Ensure you clearly state any assumptions you make. [6 marks]
Solution:
Taking the general energy balance equation:

ρCp
∂T
∂t

= − ρCp v · ∇T −∇ · q − τ : ∇v − p ∇ · v +
I2

ke

We note that wires are usually made out of solid material (aluminium), so we can choose
our reference frame to be at the velocity of the wire so that v = 0, and cancel all terms with
the velocity in them:

ρCp
∂T
∂t

= −∇ · q +
I2

ke
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✓
2 Assuming the system is at steady state (no severe weather changes or sudden surges in[2/6]
electricity demand), we have

∇ · q =
I2

ke
.

✓
1 As our wire is a cylinder, we should use cylindrical coordinates. Our expression becomes[1/6]

∇ · q =
1
r
∂

∂r
(r qr ) +

1
r
∂ qθ

∂θ
+
∂ qz

∂z
=

I2

ke

✓
1 To simplify this problem, we assume that the wire is cooled evenly by the wind so that[1/6]
there is no variance in external temperature with the angle θ or position on the wire z. This
makes the problem symmetric in z and θ.✓1[1/6]

Whenever there is symmetry, there is no transport. Our problem is rotationally symmetric
in θ and has translational invariance/symmetry in z so qθ = qz = 0 and we have

1
r
∂

∂r
(r qr ) =

I2

ke

✓
1[1/6]

b) Derive the following expression for the heat flux within the wire, [4 marks]

qr =
I2

2 ke
r

Solution:
Integrating the result of the previous question, we have

r qr =
I2

ke

r 2

2
+ C ′

1

qr =
I2 R
ke

(
r

2 R
+

C1 R
r

)
✓
2 where the integration constant (C ′

1) was redefined (to C1) to bring it inside the parenthesis[2/4]
and the terms were made dimensionless. This is not required; however, it usually makes the
values of the integration constants simpler and removes the dimensions of the constants.

At the centre of the wire (where r = 0) the heat flux cannot reach infinity so we must have
C = 0.✓1 We could also note that at r = 0 we are on an axis of symmetry and so qr = 0, also[1/4]
requiring C = 0. Our final expression for the heat flux is then:

qr =
I2

2 ke
r

✓
1[1/4]

c) Demonstrate that the temperature profile has the following form, [5 marks]

T − T0 =
I2 R2

4 ke k

(
1 − r 2

R2

)
.
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where T0 arises from an assumption on the temperature at the surface of the wire.
Solution:
Inserting the correct cylindrical definition of Fourier’s law into the result of the previous
question we have,

∂T
∂r

= − I2

2 ke k
r .

✓
1 Assuming k is constant (like all real material parameters it depends on the temperature),[1/5]
we can integrate this expression to gives us the temperature profile.

T = − I2

4 ke k
r 2 + C ′

2

=
I2 R2

4 ke k

(
C2 −

r 2

R2

)
✓
2 where again the integration constant was redefined and the terms in parenthesis were made[2/5]
dimensionless. We will assume the simple boundary condition that the exterior of the wire
is held at a fixed temperature, i.e., T (r = R) = T0, to solve for the constant,

C2 = 1 +
4 ke k
I2 R2 T0

✓
1 which yields the final expression.[1/5]

T − T0 =
I2 R2

4 ke k

(
1 − r 2

R2

)
.

✓
1[1/5]

d) Discuss if the assumptions you have made are realistic. [3 marks]
Solution:
The assumption that the surface of the wire is held at a constant temperature is unrealistic.

The assumption of steady state is also unlikely as these systems are subject to periodic
increases in demand, and the weather causes significant fluctuations. The test of this is if
the unsteady response of the wire is slow relative to these fluctuations in power and weather.

e) How might the surface boundary condition be improved? [2 marks]
Solution:
A better boundary condition would be to apply a natural convection coefficient at the surface
of the wire to link this problem to the bulk air temperature.

[Question total: 20 marks]

Question 25Q.25
An electric wire of radius 0.5 mm is made of copper (electrical conductivity ke = 5.1 ×
107 ohm−1 m−1 and thermal conductivity k = 380 W m−1 K−1). It is insulated to an outer
radius of 1.5 mm with plastic (thermal conductivity k = 0.35 W m−1 K−1). The volumetric
heat production σ, is given by σ = I2/ke where I is the current density A/m2. The ambient air
is at 38◦C and the heat transfer coefficient from the outer insulated surface to the surrounding
air is 8.5 W m−2K−1.
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a) Determine the maximum current in amperes that can flow through the wire if no part of
the insulation may exceed 93◦C. [8 marks]
Solution:
At steady state, all heat produced in the wire must leave. The total heat produced is:

Qtotal = σ Vwire =
I2 π R2

inner L
ke

To solve for the maximum current density I, we need to examine the hottest location in
the insulation, which is at the inner surface of the insulation. The total resistance to heat
transfer from the air to this inner surface is:

Rtotal = Rcond + Rconv

=
ln (Router/Rinner )

2 π L k
+

1
hconv 2π Router L

Given that, at steady state, all heat which is generated in the wire must leave through the
insulation to the air, we have:

Qtotal =
Tins./copper − T∞

Rtotal

Setting the two expressions for Qtotal to be equal, we have:

Tins./copper − T∞
ln(Router/Rinner )

2π L k + 1
hconv 2π Router L

=
I2 π R2

inner L
ke

Tins./copper − T∞
ln(Router/Rinner )

k + 1
hconv Router

=
I2 R2

inner

2 ke

I = R−1
inner

√√√√2 ke
(
Tins./copper − T∞

)
ln(Router/Rinner )

k + 1
hconv Router

Placing in the values, we can determine the maximum current density to be:

I = 0.0005−1

√
2 × 5.1 × 107 (93 − 38)
ln(0.0015/0.0005)

0.35 + 1
8.5×0.0015

= 1.659 × 107 A m−2

The total maximum current is

I π R2
inner = 1.659 × 107 π 0.00052 = 13.03A

b) Demonstrate that the heat flux in the copper section of the wire is given by the following
expression:

qr =
I2

2 ke
r

[8 marks]
Solution:
Taking our general balance equation, we have

ρCp
∂T
∂t

= − ρCp v · ∇T −∇ · q − τ : ∇v − p ∇ · v +
I2

ke
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The wires are made out of solid material, so we can state that v = 0, and cancel all terms
with the velocity in them:

ρCp
∂T
∂t

= −∇ · q +
I2

ke

Assuming the system is at steady state, we have

∇ · q =
I2

ke

Using cylindrical coordinates our expression becomes

∇ · q =
1
r
∂

∂r
(r qr ) +

1
r
∂ qθ

∂θ
+
∂ qz

∂z
=

I2

ke

Our problem is rotationally symmetric in θ and has translational invariance/symmetry in z
so qθ = qz = 0 and we have

1
r
∂

∂r
(r qr ) =

I2

ke

Integrating this expression, we have:

qr =
I2

ke

r
2

+
C
r

qr =
I2

ke

(
r
2

+
C
r

)
In the centre of the wire where r = 0, the heat flux cannot reach infinity so we must have
C = 0. Alternatively, at r = 0 we are on an axis of symmetry and so qr = 0, also requiring
C = 0. Our final expression for the heat flux is then:

qr =
I2

2 ke
r

c) Solve for the temperature profile within the copper wire, assuming the outer surface of
the wire is at Tcrit .. [4 marks]
Solution:
Selecting the correct definition of Fourier’s law, we have

∂T
∂r

= − I2

2 ke k
r

Assuming k is constant, we can integrate this expression to gives us the temperature profile.

T =
I2

4 ke k
(
C − r 2)

The exterior of the wire (r = R) is at the temperature T = Tcrit ., allowing us to solve for the
constant C to give:

T − Tcrit . =
I2 R2

4 ke k

(
1 − r 2

R2

)
[Question total: 20 marks]
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Question 26Q.26
Again consider that we have a cylindrical wire of length L and radius R, generating heat at a
rate of I2/ke per unit volume. Using a simple (not differential!) energy balance over the whole
volume of the wire, what is the total heat generated Q? Compare this to the expression for
the heat flux q(r ) evaluated at the surface of the wire (r = R) which you derived in Q. 24.
Solution:
At steady state, the total heat flux Q out of the wire must be given by the total heat generated.
Assuming heat production is homogeneous (I and ke are constant) within the wire, we can just
multiply the volumetric energy production rate (I2/ke) by the volume of the wire:

Q = π R2 L k−1
e I2 (12)

If we divide this by the surface area (2 π R L), we obtain the flux at the surface of the wire (this
is because all of the heat generated in the wire must leave by convection from the surface):

qboundary =
R I2

2 ke
(13)

On comparing with the previous solution(s), it is noted that this could be obtained by setting
r = R in the solution derived previously,

q(r ) =
I2

2 ke
r . (14)

Both approaches give consistent results (as expected).
Only relevant once you’ve studied non-Newtonian flows:
Here, we see the analogy between electrically heated wires and fluid flow in a pipe continues.
Here, the boundary flux of heat is of importance, but in Bingham plastic flows we need to
estimate the boundary momentum flux (i.e. stress) to understand if the flow is above or below
its yield stress. In both cases the expressions are nearly identical.

[Question end]

Question 27Q.27
The following integrated expressions for heat transfer in a plate and a pipe are available:

Qx =
k
X

A (Tinner − Touter ) Qr =
2π L k

ln (Router/Rinner )
(Tin − Tout ) (15)

An equivalent equation is required for spherical geometries.

a) What single assumption was made in the derivation energy balance equation (see Eq. (68))?

Solution:
In the derivation of this equation, the pressure dependency of the internal energy was as-
sumed to be small.

dU = Cp dT +
��

���
��*

0(
∂U
∂p

)
T

dp

b) Simplify the energy balance equation, Eq. (68), to the following expression:

∂

∂r
r 2 qr = 0
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Clearly state any assumptions you make along the way.
Solution:
As we’re considering the derivation of an expression for heat transfer in solids, we can say
v = 0. This greatly simplifies the energy balance equation:

ρCp
∂T
∂t

= −
�������:0
ρCp vj ∇j T −∇i qi −�����:0

τji ∇j vi −����:0p ∇i vi + σenergy

ρCp
∂T
∂t

= −∇i qi + σenergy

Note: We’re using index notation here, which is fine even though this is a curvelinear
coordinate system provided we don’t actualy start to work with individual components.
We’re essentially working in cartesian coordinates before changing over to cylindrical.
Which is known as the heat equation. Assuming that there is no source of heat, we can
cancel the generation term, ����:0σenergy . If the system is at steady state, the time-derivative
also cancels to yield:

∇i qi = 0

For spherical systems, we must look up the definition of this term (which is actually ∇ · q)
which gives:

1
r 2

∂

∂r
(
r 2 qr

)
+

1
r sin θ

∂

∂θ
(qθ sin θ) +

1
r sin θ

∂ qϕ

∂ϕ
= 0

If we assume the system is symmetric in θ and ϕ, we can cancel the gradients in those
directions to yield:

1
r 2

∂

∂r
(
r 2 qr

)
= 0

∂

∂r
r 2 qr = 0

c) Solve for the following equation for the heat flux in spherical shells.

qr =
k

r 2
(
R−1

inner − R−1
outer

) (Tinner − Touter )

Solution:
Taking the above equation, we can perform the integration immediately to yield:

∂

∂r
r 2 qr = 0

r 2 qr = C1

qr =
C1

r 2 (16)

We then need the definition of qr = −k ∂T
∂r , again taken from the data sheet, we have

−k
∂T
∂r

=
C1

r 2

−k
∫ Touter

Tinner

dT =
∫ Router

Rinner

C1

r 2 dr

−k (Touter − Tinner ) = C1
(
R−1

inner − R−1
outer

)
C1 =

k
R−1

inner − R−1
outer

(Tinner − Touter )
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Reinserting this expression for C1 into Eq. (16), we have

qr =
k

r 2
(
R−1

inner − R−1
outer

) (Tinner − Touter )

d) Demonstrate that the resistance to heat transfer, for a spherical shell is given by the
following expression:

R =
1

UA
=

R−1
inner − R−1

outer

4 π k

Note: You will need to derive the expression for the overall heat flux, Qr , and then isolate
the R = 1(UA) term.
Solution:
The heat flux multiplied by the surface area is the overall heat flux. At any point in the
shell, the surface area is Ar = 4π r 2. We have

Qr = Ar qr

=
4 π���

0

r 2 k

���
0

r 2
(
R−1

inner − R−1
outer

) (Tinner − Touter )

=
4π k

R−1
inner − R−1

outer
(Tinner − Touter )

Here, we can see the expected result that the overall heat flux is constant through the shell.

The terms which correspond to the resistance are:

Qr = U A (Tinner − Touter )

R =
1

UA
=

R−1
inner − R−1

outer

4π k

[Question end]

Question 28Q.28
A spherical nuclear pellet, with an outer radius of 6 cm, is designed to produce 1kW of

heat through fission. The heat transfer from the pellet is limited by a 5 mm pyrolytic graphite
coating on the surface, which has a thermal conductivity of 240 W m−1 K−1. Underneath the
graphite is a 1 mm layer of Silicon Carbide reinforcement, which has a thermal conductivity
of 4 W cm−1 K−1. As the pellet is cooled by forced convection using a gas, the external
convective heat transfer coefficient is around 100 W m−2 K−1. If the ambient temperature is
150◦C, calculate the surface temperature at the interface between the core and the Silicon
Carbide.

Solution:
Here, we have to use the addition of resistances to calculate the internal temperature. There
is a resistance resulting from the Silicon Carbide (SiC) layer, from the Graphite (C) layer, and
from the convective heat transfer. The overall heat transfer is then given by:

Qr =
1

RSiC + RC + Rconv
(Tinner − T∞)
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Figure 12: The nuclear pellet described in Q. 28.

where RSiC is the resistance (not radius) of the Silicon Carbide layer and RC is the resistance
of the Graphite layer, and Rconv = 1/(h Aouter ). We can rearrange this expression to make the
inner temperature the object

Tinner = T∞ + Qr (RSiC + RC + Rconv ) (17)

The resistance for spheres is given in the datasheet to be:

R =
R−1

inner − R−1
outer

4π k
For the Graphite layer, we have:

RC =
0.055−1 − 0.06−1

4 π 240
≈ 5.0 × 10−4 W−1K

For the Silicon Carbide layer, we have

RSiC =
0.054−1 − 0.055−1

4 π 400
≈ 6.7 × 10−5 W−1K

Given that the surface area of a sphere is A(r ) = 4π r 2, the convective resistance is

Rconv =
1

hconv 4 π R2
outer

=
1

100 × 4π 0.062 ≈ 0.221 W−1K

Inserting these into Eq. (17), we have

Tinner ≈ 150 + 1000
(
6.7 × 10−5 + 5.0 × 10−4 + 0.221

)
Tinner ≈ 370◦C

Both layers only provide a small resistance to the heat transfer.
On a related topical note (not part of the course, but part of your embedded safety learning
objectives), please read about the Windscale fire, the worst nuclear accident in UK history
which occurred when the pyrolytic graphite caught fire in the reactor. This just illustrates the
difficulty of controlling heat transfer in complex geometries.
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[Question end]

Question 29Q.29
The temperature profile inside a nuclear fuel rod is needed as part of the design calculations
for a reactor. The rod is a cylinder with a radius, R, and is assumed to be composed of a
homogeneous fuel which is producing heat with the following profile:

σheat = σ0
(

1 + b
( r

R

)2
)

(18)

a) What assumption has been made to derive the energy balance equation below?

ρCp
∂T
∂t

= −ρCp v · ∇T −∇ · q − τ : ∇v − p ∇ · v + σenergy

[2 marks]
Solution:
In the derivation of this equation, the pressure dependency of the internal energy was as-
sumed to be small.

dU = Cp dT +
���

����*
0(

∂U
∂p

)
T

dP

✓
2[2/2]

b) Simplify the energy balance equation to the following expression:

1
r
∂

∂r
(r qr ) = σenergy

Clearly state any assumptions you use. [8 marks]
Solution:
Starting from the energy balance equation:

ρCp
∂T
∂t

= −ρCp vj ∇j T −∇i qi − τji ∇j vi − p ∇i vi + σenergy

We assume that the system is at steady state✓
1 to cancel the time derivative.[1/8]

∇i qi = −ρCp vj ∇j T − τji ∇j vi − p ∇i vi + σenergy

✓
1 As the nuclear fuel is a solid✓

1 we can assume v = 0✓
1 to cancel most terms, yielding[1/8]

[1/8]
[1/8]

∇i qi = σenergy

1
r
∂

∂r
(r qr ) +

1
r
∂ qθ

∂θ
+
∂ qz

∂z
= σenergy

✓
1 Neglecting end effects✓

1 , we can exploit the symmetry of the system to say that any heat[1/8]
[1/8] transfer in the z and θ directions are zero✓1 . This implies that qz = 0 and qθ = 0, giving the

[1/8] final result

1
r
∂

∂r
(r qr ) = σenergy

✓
1[1/8]
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c) Derive the expression below for the heat flux from the simplified energy balance.

qr = σ0
(

r
2

+ b
r 3

4 R2

)
(19)

Clearly state any assumptions you use. [5 marks]
Solution:
Starting with the result from the previous question, we have

1
r
∂

∂r
r qr = σ0

(
1 + b

( r
R

)2
)

∂

∂r
r qr = σ0

(
r + b

r 3

R2

)
r qr = σ0

(
r 2

2
+ b

r 4

4 R2 + C
)

qr = σ0
(

r
2

+ b
r 3

4 R2 +
C
r

)
✓
3 We know that the heat flux, qr , at the centre of the rod (r = 0) must be finite (it is in fact[3/5]
zero due to the symmetry). Therefore, we must have C = 0, which gives the final result

qr = σ0
(

r
2

+ b
r 3

4 R2

)
✓
2[2/5]

d) Derive the following expression for the temperature profile.

T − T0 =
σ0

k

(
R2 − r 2

4
+ b

R4 − r 4

16 R2

)
(20)

You will need to select an appropriate boundary condition and give the meaning of the
constant T0. [5 marks]
Solution:
Starting from the answer to the previous question

qr = σ0
(

r
2

+ b
r 3

4 R2

)
We insert the definition of the heat flux into the equation to get:

−k
∂T
∂r

= σ0
(

r
2

+ b
r 3

4 R2

)
∂T
∂r

= −σ0

k

(
r
2

+ b
r 3

4 R2

)
T = −σ0

k

∫ (
r
2

+ b
r 3

4 R2

)
dr

T = −σ0

k

(
r 2

4
+ b

r 4

16 R2

)
+ C

✓
2 An appropriate boundary condition for this system is that the surface of the rod (r = R)[2/5]
is at a known temperature, T 0.✓1 Solving for the constant, we have[1/5]
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T0 = −σ0

k

(
R2

4
+ b

R4

16 R2

)
+ C

✓
2 Inserting this expression, we have the final result:[2/5]

T − T0 =
σ0

k

(
R2 − r 2

4
+ b

R4 − r 4

16 R2

)
[Question total: 20 marks]

Question 30Q.30
To explore the effect of using a temperature-dependent thermal conductivity, consider heat
flowing through an annular (pipe) wall of inside radius R0 and an outside radius R1. It is
assumed that thermal conductivity varies linearly with temperature from k0(T = T0) to k1(T =
T1) where T0 and T1 are the inner and outer wall temperatures respectively.

Figure 13: A diagram of conduction through an annular(pipe) wall for Q. 30.

a) Derive the following energy balance equation

∂

∂r
r qr = 0,

and state ALL assumptions required. [7 marks]
Solution:
Assuming that the pressure dependency of the internal energy of the solid is small✓1 , Equa-[1/7]
tion 68 can be used valid.

As this is heat transfer in solids, we can set the frame of reference to the wall and v = 0.
This greatly simplifies the energy balance equation:

ρCp
∂T
∂t

= −
�������:0
ρCp vj ∇j T −∇i qi −�����:0

τji ∇j vi −����:0p ∇i vi + σenergy

ρCp
∂T
∂t

= −∇i qi + σenergy

✓
1[1/7]

Assuming the wall does not generate heat:

ρCp
∂T
∂t

= −∇i qi + ����:0σenergy
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✓
1[1/7]

And steady state:

�
�
�

��>
0

ρCp
∂T
∂t

= −∇i qi

∇i qi = 0

✓
1[1/7]

Finally, inserting the cylindrical coordinate system definition of ∇i qi :

∇i qi =
1
r
∂

∂r
(r qr ) +

1
r
∂ qθ

∂θ
+
∂ qz

∂z
✓
2 Assuming a symmetry of the system ALONG and AROUND the axis, the only remaining[2/7]
derivative is in the r -direction:

∇i qi =
1
r
∂

∂r
(r qr )

=
∂

∂r
(r qr ) = 0

✓
1 As required.[1/7]

b) Derive the following expression for the temperature profile

Qr =
2π L

ln
(

R0
R1

) k1 + k0

2
(T1 − T0),

where L is the length of the pipe/annulus. [10 marks]
Note: You will need the following identity:

T 2
1 − T 2

0 = (T1 + T0)(T1 − T0).

Solution:
Performing the integration, we have

r qr = C1

qr =
C1

r
✓
1 Inserting in Fourier’s law, we have[1/10]

−k
∂T
∂r

=
C1

r

We need to insert the temperature dependent thermal conductivity, which is given by the
following linear relationship

k = k0 + (T − T0)
k1 − k0

T1 − T0

✓
1 Inserting this,[1/10]
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−
(

k0 + (T − T0)
k1 − k0

T1 − T0

)
∂T
∂r

=
C1

r
✓
1 Integrating between the two limits,[1/10]

−
∫ R1

R0

(
k0 + (T − T0)

k1 − k0

T1 − T0

)
∂T
∂r

dr =
∫ R1

R0

C1

r
dr

−
∫ T1

T0

(
k0 + (T − T0)

k1 − k0

T1 − T0

)
dT = C1 ln

(
R1

R0

)
−
(

k0 (T1 − T0) +
(

T 2
1 − T 2

0

2
− (T1 − T0) T0

)
k1 − k0

T1 − T0

)
= C1 ln

(
R1

R0

)
✓
2 Using the identity T 2

1 − T 2
0 = (T1 + T0)(T1 − T0),[2/10]

−
(

k0 (T1 − T0) +
T1 + T0

2
(k1 − k0) − T0(k1 − k0)

)
= C1 ln

(
R1

R0

)
−
(

k0 T1 +
T1 + T0

2
(k1 − k0) − T0 k1

)
= C1 ln

(
R1

R0

)
✓
2 Simple cancellation and factorisation leads to the following[2/10]

k1 + k0

2 ln
(

R0
R1

) (T1 − T0) = C1

✓
1 Inserting this back into the expression for the flux, we have[1/10]

qr =
C1

r

=
k1 + k0

2 r ln
(

R0
R1

) (T1 − T0)

✓
1 The total flux is given by multiplying by the cylindrical area, 2π r L,[1/10]

Qr =
2π L

ln
(

R0
R1

) k1 + k0

2
(T1 − T0)

✓
1[1/10]

c) Compare this expression to the standard expression for conduction in pipe walls (with
constant thermal conductivity), what can you observe? [3 marks]
Solution:
The expression for pipes is availabe from the tables in the datasheet, and is as follows

Q =
2π L k

ln
(

R1
R0

)∆T .

✓
1[1/3]
On comparision with the derived equation, the only change is to replace the constant thermal
conductivity with the average of the thermal conductivity on the inner and outer surfaces.
✓
1[1/3]
For small temperature differences (where a linear temperature dependence may be assumed)
using the average thermal conductivity is a useful strategy.✓1[1/3]

[Question total: 20 marks]
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Question 31Q.31
Consider the flow of a Newtonian liquid between two plates, similar to Q.14, but now both
plates are maintained two different temperatures. We will attempt to take into account the
effect of temperature on the flow profile.

Figure 14: Flow through parallel plates.

You may assume that the viscosity, µ, of the liquid depends on temperature T according to
the following relationship:

µ(T ) =
µ0

1 + β(T − T0)
where T0 is a reference temperature, and µ0 and β are empirical constants. The fluid flows
under the influence of a pressure gradient ∆P/L between two flat plates, as shown in Fig. 14.
The walls are at temperatures T0 and T1, where T0 is the reference temperature, and T1 > T0.

a) Temporarily ignoring the motion of the fluid (v ≈ 0⃗), demonstrate that the temperature
can be taken to be a linear function of position:

T ≈ T0 + (T1 − T0)
y
H

Solution:
Assuming this is an incompressible liquid, we can ignore the pressure dependence of the
internal energy and use the energy balance equation. Using rectangular coordinates, we can
use the index notation form,

ρCp
∂T
∂t

= − ρCp vj ∇j T −∇i qi − τji ∇j vi − p ∇i vi + σenergy .

There is no “generation” of energy, and the system is at steady state, thus the leftmost and
rightmost terms are zero,

0 = − ρCp vj ∇j T −∇i qi − τji ∇j vi − p ∇i vi .

We are told to assume v = 0, thus all terms with the velocity should go to zero as well,

0 =∇i qi
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Assuming the system is symmetric in the x and z directions, we can write,

∇y qy = 0,
∂qy

∂y
= 0,

qy = C1.

Substituting in Fourier’s law we have,

−k
∂T
∂y

= C,

∂T
∂y

= −C
k

,

T = −C1

k
y + C2.

Noting that T (y = H) = T1 and T (y = 0) = T0, we can determine the constants to give the
following equation,

T ≈ T0 + (T1 − T0)
y
H

.

Additional notes (not assessed/marked):
We are told to assume that motion can be ignored (v = 0), but how did we come up with
this assumption? If the flow is well-developed, then vy = vz = 0. However, the term vj∇j T
is completely zero if we assume the flow is symmetric in the x-direction (i.e. ∇x T = 0).
Also, any terms with ∇ivx = 0 are zero using the same assumption, thus all terms with the
velocity go to zero if the flow profile does not change along the channel.

b) Derive the stress profile and prove that it is equal to the expression below. Compare this
stress profile to the stress profile for flow between two plates, and for film flow on a plate.
What is unique about the stress profile?

τyx =
∆p H

L

( y
H

+ C1

)
Solution:

See Q. 14a-b for the solution, its the same as flow between two unheated plates!

The stress profile is independent of the viscous properties of the fluid. Regardless of if the
fluid is Newtonian or has varying viscosity, the steady state stress profile is identical for flow
between two stationary plates. Thus what is unique about the stress profile is that its the
same form in all three cases.

Additional notes, (not asseessed/marked): Direct force balance
This is an alternative approach to starting with the balance equations and is popular in many
text books. Its given here only to demonstrate that you can begin each derivation with a
direct force balance; however, it is difficult in curvelinear coordinates to correctly derive it
this way so it is recommended that you stick to derivations via the balance equations.
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We begin this problem by performing a momentum balance on a thin slab of fluid of thickness
dy ; the bottom of the slab is located at y .

0 = [τyx (y + dy ) − τyx (y )]L Z + [p(0) − p(L)]Z dy

=
[
τyx (y + dy ) − τyx (y )

dy

]
− ∆p

L
(21)

where Z is the width of the plates. Taking the limit that dy goes to zero, we find

∂τyx

∂y
=

∆p
L

(22)

Integrating gives

τyx =
∆p
L

y + C ′
1 (23)

=
∆p H

L

( y
H

+ C1

)
(24)

c) Assuming the temperature profile is indeed linear, derive the following velocity profile for
this system.

vx (y ) = −∆p H2

Lµ0

y
H

[
β(T1 − T0)

y2

3 H2 + (1 + C1 β [T1 − T0])
y

2 H
+ C1

]
(25)

where C1 is a dimensionless integration constant which you must determine.
Solution:
In this problem the viscosity depends on position, due to the fact that the temperature
depends on position, i.e. we have,

µ(T ) =
µ0

1 + β(T − T0)
T (y ) ≈ T0 + (T1 − T0)

y
H

.

Combining these expressions gives viscosity as a function of position

µ(y ) =
µ0

1 + β(T1 − T0)y/H

Using Newton’s law of viscosity into the stress equation from the previous question gives
the following,

τyx = µ(y )
∂vx

∂y
= −∆p H

L

( y
H

+ C1

)
Expanding the definition of the viscosity, we have

∂vx

∂y
= −∆p H

Lµ0

[ y
H

+ C1

] [
1 + β(T1 − T0)

y
H

]
(26)

Integrating (and redefining the integration constant to bring it inside the brackets), we find

vx (y ) = −∆p H
Lµ0

[
C1 y +

y2

2 H
+ β(T1 − T0)

(
y3

3 H2 +
y2 C1

2 H

)
+ C2

]
(27)
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We know that vx (y = 0) = 0, therefore C2 = 0. With vx (y = H) = 0. we find:

0 = −∆p
µ0

H
L

[
C1 H +

H
2

+ β(T1 − T0)
(

H
3

+
H C1

2

)]
(28)

0 = C1 +
1
2

+ β(T1 − T0)
(

1
3

+
C1

2

)
(29)

C1 = −
1 + 2

3β(T1 − T0)
2 + β(T1 − T0)

(30)

With some rearrangement we find

vx (y ) = −∆p H2

Lµ0

y
H

[
C1 +

y
2 H

+ β(T1 − T0)
(

y2

3 H2 +
y C1

2 H

)]
(31)

vx (y ) = −∆p H2

Lµ0

y
H

[
β(T1 − T0)

y2

3 H2 + (1 + C1 β [T1 − T0])
y

2 H
+ C1

]
(32)

d) Determine the flow-rate to pressure drop relationship.
Solution:
The average velocity of the fluid between the plates v̄x is given by

v̄x =
1

H Z

∫ Z

0

∫ H

0
vx (y ) dy dz

=
1
H

∫ H

0
vx (y ) dy

= − 1
H
∆p
L

H2

µ0

∫ H

0

( y
H

)[
β(T1 − T0)

y2

3H2 + (1 + C1 β(T1 − T0))
y

2H
+ C1

]
dy

= −∆p
L

H2

µ0

∫ 1

0

[
β(T1 − T0)

η3

3
+ (1 + C1 β(T1 − T0))

η2

2
+ C1 η

]
dη

= −∆p
L

H2

µ0

[
β(T1 − T0)

η4

12
+ (1 + C1 β(T1 − T0))

η3

6
+ C1

η2

2

]1

0

= −∆p
L

H2

12µ0
[(1 + 2 C1)β(T1 − T0) + 2(1 + 3 C1)] (33)

The flowrate is simply the average velocity times by the cross sectional area, i.e., V̇x = H Z v̄x .

e) Calculate the x-component of the force of the fluid on the bottom surface y = 0 per unit
area of the plate and compare it to the value on the top surface.
Solution:
The x-component of the force of the fluid on the bottom surface IS the stress on the plate.
Taking the previous expression:

τyx =
∆p H

L

( y
H

+ C1

)
(34)

We have

τyx (y = 0) =
∆p
L

H C1 (35)

and

τyx (y = H) =
∆p
L

H (1 + C1) (36)
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Unless the constant C1 has the value C1 = −1
2 , it is clear that the magnitude of the stress on

each boundary is not equal. Please note, the sign of the stress is opposite on each boundary.

The constant C1 is only −1/2 if the temperature difference T1 − T0 is zero:

C1 = −
1 + 2

3β������:0
(T1 − T0)

2 + β������:0
(T1 − T0)

= −1
2

(37)

[Question end]

Question 32Q.32
Perform dimensional analysis on a pendulum of length l , mass m, under gravity g to better
understand the period of oscillation, t . How does the pendulum period change with changes
in its mass?

Figure 15: A pendulum with mass m, length l , in gravity of g.

Solution:
We already know that the period of a pendulum doesn’t depend on the amplitude of the swing.
Its period will be a function of the string length l , gravitational acceleration g and the mass
m.

t = f (l , m, g)

We know that physical systems are independent of units, (the period doesn’t change even
though we measure it in hours or seconds). We should then make the equation independent of
the units by making all terms dimensionless:

t
T

= f
(

l
L

,
m
M

,
g T 2

L

)
where L is the unit of length, M is the unit of mass, and T is the unit of time. L, M, and T
aren’t units in the sense of kilograms or meters, but rather parts of the system we decide to
make the unit. For example, in a pipe of radius R, we often use the dimensionless position
variable r/R, where R has been chosen as the unit length.
We need to choose a length, mass, and time scale for the pendulum. The unit length of the
system can be the length of the pendulum L = l , and the unit mass can be it’s mass, M = m.
We can then get a unit of time from the gravitational constant:

T =
√

l/g
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Inserting these into the expression above, we have

t√
l/g

= f
(

l
l
,

m
m

,
g l
l g

)
= f (1, 1, 1)

The unknown function is now a constant! We now know that the period of a pendulum
doesn’t depend on its mass as its dimensionless form is equal to a function of constants (also a
constant).We could determine the unknown constant either through experimental observation
or through a more careful theoretical analysis. The actual result is

t√
l/g

= 2π

We can see that dimensional analysis has not only simplified the system, but almost solved it.
It is clear from dimensional analysis, the period of the oscillator is not affected by the mass
of the pendulum. In reality, the pendulum must have sufficient mass to make frictional losses
insignificant.

[Question end]

Question 33Q.33
Consider laminar flow within a pipe. The only prior knowledge you should assume is that
the pressure drop must be a function of pipe diameter D, viscosity µ, density ρ, and average
velocity ⟨vz⟩, i.e.,

∆p/l = f (D, ρ,µ, ⟨vz⟩) .

a) Perform dimensional analysis on the pressure drop per unit length, ∆p/l , and determine
the relevant dimensionless groups. [12 marks]
Solution:
The first step is to make the units of each term explicit by dividing out the dimensions of
each term

∆p
l

L2 T 2

M
= f
(

D
L

,
ρL3

M
,
µL T

M
,
⟨vz⟩ T

L

)
.

Students will recieve FIVE✓
5 marks for correctly identifying the units of each term in SI.[5/12]

A convenient length scale is the diameter, L = D,✓1 which gives:[1/12]

∆p
l

D2 T 2

M
= f
(

1,
ρD3

M
,
µD T

M
,
⟨vz⟩ T

D

)
✓
1[1/12]

A convenient mass scale is M = ρD3,✓1 which gives:[1/12]

∆p
l

T 2

ρD
= f
(

1, 1,
µT
ρD2 ,

⟨vz⟩ T
D

)
✓
1[1/12]

Finally, a convenient time scale is T = D/ ⟨vz⟩, which gives:✓1[1/12]

∆p
l

D
ρ ⟨vz⟩2 = f

(
1, 1,

µ

ρ ⟨vz⟩ D
, 1
)
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Noticing that the dimensionless grouping on the right hand side is the Reynolds number✓1 ,[1/12]
we have

∆p
l

D
ρ ⟨vz⟩2 = f

(
1, 1, Re−1, 1

)
= f (Re)

✓
1[1/12]

b) Compare this to the exact solution, known as the Hagen-Poiseuille equation, as given
below.

V̇z = π

(
−∆p

l
+ ρgz

)
R4

8µ
.

Determine the form of the unknown function, f . [5 marks]
Solution:
Noting that ⟨vz⟩ = V̇z/A✓

1 and ignoring gravity✓
1 , we have[1/5]

[1/5]
⟨vz⟩ = −∆p

l
R2

8µ
.

✓
1 Rearranging the equation to make it identical to the LHS of the solution to the previous[1/5]
question, we have

∆p
l

R
ρ ⟨vz⟩2 = −8

µ

ρ ⟨vz⟩ R
∆p
l

D
ρ ⟨vz⟩2 = −32

µ

ρ ⟨vz⟩ D

= −32
Re

✓
2 Thus the unknown function is f = −32 Re−1.[2/5]

c) Comment on why dimensional analysis is so important. Also comment on why redundant
dimensionless groups arise (as an example, consider the relationship between friction
factor Cf and the Reynolds number). [3 marks]
Solution:
Dimensionless groups are important, and arise so often, as units themselves are an entirely
artificial construct and natural phenomena must be independent of the choice of units. For
our models/equations to correctly reflect this, units must cancel within expressions and thus
our equations must be able to be rearranged into a composition of dimensionless groups. ✓

2[2/3]

Redundant dimensionless groups arise as dimensional analysis places no constraints on the
functional form of equations, just on the possible groupings of dimensional terms. Thus
dimensionless groups (such as the Reynolds number) may appear with arbitrary transform-
ations applied. One example is the friction factor, which is a dimensionless grouping, but
is simply a transformation of the Reynolds number dimensionless group, Cf = 16 Re−1 (and
vice-versa). ✓

1 .[1/3]

[Question total: 20 marks]
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Question 34Q.34
Carry out a dimensional analysis on the forced convection heat transfer coefficient, h, to
determine which are the fundamental dimensionless numbers involved. You may assume
the following general dependence

h = f
(
d , µ, k , ⟨v⟩, ρ, Cp

)
where d is the channel diameter (m), µ is the viscosity (Pa s), k is the thermal conductivity
(W m−1 K−1), ⟨v⟩ is the mean flow velocity (m s−1), ρ is the mass density (kg m−3), and Cp

is the specific heat capacity at constant pressure (kJ kg−1 K−1). [10 marks]
Solution:
Making the expression dimensionless:

hΘT 3

M
= f
(

d
L

,
µT L

M
,

k T 3 Θ

M L
,

T ⟨v⟩
L

,
ρL3

M
,

Cp T 2 Θ

L2

)
Looking at each term, it is clear that it will simplify if we select L = d as the unit length,
M = ρL3 as the unit mass, T = M/(µL) as the unit time, and Θ = M L/(T 3 k ) as the unit
Temperature. Inserting in the temperature unit Θ first, we have:

h L
k

= f
(

d
L

,
µT L

M
, 1,

T ⟨v⟩
L

,
ρL3

M
,

Cp M
T L k

)
Inserting the time unit T next, we have

h L
k

= f
(

d
L

, 1, 1,
M ⟨v⟩
µL2 ,

ρL3

M
,

Cp µ

k

)
Inserting the mass unit M next, we have

h L
k

= f
(

d
L

, 1, 1,
ρ ⟨v⟩ L

µ
, 1,

Cp µ

k

)
Finally, inserting in the length unit L, we have:

h d
k

= f
(

1, 1, 1,
ρ ⟨v⟩ d

µ
, 1,

Cp µ

k

)
You should notice that the left hand side is the Nusselt number, while the two terms inside the
unknown function are the Reynolds number and the Prandtl number! We can then write:

Nu =
h d
k

= f (Re, Pr)

[Question total: 10 marks]

Question 35Q.35
Calculate the dimensionless heat transfer coefficient (Nu) for conductive heat transfer through
rectangular walls. Note: You will need to rephase the conductive resistance as a heat trans-
fer coefficient h.
Solution:
We have

Nu =
h L
k

But for conduction we have U = h = k/X . Choosing our characteristic length as L = X (this is
the lengthscale controlling conduction), we have

Nucond . =
�
�
��7

1
k L
k L

= 1

[Question end]
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Question 36Q.36
The heat loss from a pipe which is carrying a hot process fluid must be estimated to evaluate
if additional insulation is economically justified.

a) Starting from the general expression for steady-state conduction in cylindrical shells:

∂

∂r
r qr = 0 (38)

Derive the following expression for the heat flux in a cylindrical wall:

qr =
k

r ln (Router/Rinner )
(Tinner − Touter ) (39)

[8 marks]
Solution:
Performing the integration, we have

r qr = C

qr =
C
r

Inserting in Fourier’s law, we have

−k
∂T
∂r

=
C
r

∂T
∂r

= − C
k r∫ Touter

Tinner

dT = −C
k

∫ Router

Rinner

1
r

dr

Touter − Tinner = −C
k

[ln r ]Router
Rinner

Touter − Tinner =
C
k

ln
Rinner

Router

C =
k

ln (Rinner/Router )
(Touter − Tinner )

Inserting this back into the expression for the flux, we have

qr =
C
r

=
k

r (Rinner/Router )
(Touter − Tinner )

=
k

r (Router/Rinner )
(Tinner − Touter )

b) Derive the following expression for the heat transfer resistance for conduction in a cyl-
indrical wall.

R =
ln (Router/Rinner )

2π L k
(40)
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[3 marks]
Solution:
Note: The curved surface of a cylinder has an area of 2 π r L.

The surface area for the flux at any radius r is the curved surface area of a cylinder with
radius r . The total heat flux is then

Qr = 2π r L qr

=
2 π L k

ln (Router/Rinner )
(Tinner − Touter )

If we have Q = U A∆T = R−1∆T , we can isolate the terms to give the resistance as

R =
ln (Router/Rinner )

2π L k

c) The pipe carrying the process fluid has an inner diameter of 15 cm and a length of
50 m. The process fluid, flowing at 1 kg s−1, has a density of 800 kg m−3, a viscosity
of 2 × 10−3 Pa s, a heat capacity of 1.2 kJ kg−1 K−1, and a thermal conductivity of
0.15 W m−1 K−1.

i) Is the flow inside the pipe turbulent? [2 marks]
Solution:
We must calculate the Reynolds number Re. The volumetric flow rate is

V̇ = Ṁ/ρ = 1/800 = 0.00125 m3 s−1

The average flow velocity is then

⟨v⟩ = V̇/A = 0.00125/(π 0.0752) ≈ 0.0707 m s−1

The Reynolds number is

Re =
ρ ⟨v⟩ D

µ
=

800 × 0.0707 × 0.15
2 × 10−3 ≈ 4242

The flow is turbulent.

ii) Demonstrate that the forced convection heat transfer coefficient on the inside of the
pipe is approximately h ≈ 57 W m−2 K−1. [2 marks]
Solution:
The appropriate expression from the data sheet is

Nu ≈ (Cf/2)Re Pr

1.07 + 12.7(Cf/2)1/2
(
Pr2/3 − 1

) ( µb

µw

)0.14

Here, we cannot use the viscosity correction as the data is unavailable, so we assume
µb = µw . Calculating the friction factor, we have

Cf = 0.079 Re−1/4 = 0.00979

The Prandtl number is

Pr =
µCp

k
=

2 × 10−3 × 1.2 × 103

0.15
= 16
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Substituting in, we have

Nu ≈ (0.00979/2) × 4242 × 16
1.07 + 12.7(0.00979/2)1/2

(
162/3 − 1

)
�
�

�
�
��(

µb

µw

)0.14

≈ 57

The heat transfer coefficient is obtained from the Nusselt number

h =
Nu k

L
≈ 57 × 0.15

0.15
≈ 57 W m−2 K−1

iii) The pipe has a carbon-steel wall which is 1 cm thick and has a thermal conductivity of
43 W m−1 K−1. The pipe is also insulated using a 1 cm layer of rock wool, which has
a thermal conductivity of 0.045 W m−1 K−1. The external heat transfer coefficient,
which includes radiation and natural convection, is estimated to be 5 W m−2 K−1.
Determine the overall heat flux through the pipe if the process fluid is at 80◦C and the
surroundings are at 10◦C. [5 marks]
Solution:
The internal area of the pipe is:

Ainner = π D L = π (0.15)50 ≈ 23.6 m2

The internal resistance to heat transfer is

Rinner =
1

hinner Ainner
=

1
57 × 23.6

= 0.000743 K W−1 (0.0372 K W−1 m)

The value in parenthesis is per-metre of pipe. The external area of the pipe is:

Aouter = π D L = π (0.15 + 0.02 + 0.02)50 = 29.8 m2

The external resistance to heat transfer is

Router =
1

houter Aouter
=

1
5 × 29.8

= 0.00671 K W−1 (0.336 K W−1 m)

which is more significant than the internal resistance.
The resistance to heat transfer by the wall is

Rwall =
ln (Router/Rinner )

2π L k

=
ln (0.17/0.15)
2π 50 × 43

= 9.27 × 10−6 K W−1 (4.63 × 10−4 K W−1 m)

which is negligble compared to the external heat transfer resistance.
The insulation resistance is

Rinsulation =
ln (Router/Rinner )

2 π L k

=
ln (0.19/0.17)
2 π 50 × 0.045

= 0.00787 K W−1 (0.393 K W−1 m)

6th December 2023 Page 63 of 157



Heat, Mass, and Momentum Transfer M. Bannerman

which is comparable to the external heat transfer coefficient.
The total resistance is

Rtotal = Rinner + Router + Rwall + Rinsulation

= 0.000743 + 0.00671 + 9.27 × 10−6 + 0.00787 ≈ 0.0153 K W−1 (0.767 K W−1 m)

The total heat flux is

Q = R−1
total (Tinner − Touter ) = 0.0153−1(80 − 10) ≈ 4.58 kW (91 W m−1)

[Question total: 20 marks]

Question 37Q.37

a) Chilled water flowing through brass tubes of 0.0126 m inside diameter and 0.0018 m
thickness cools a stream of air flowing outside of the tube. The film coefficients for the
air and water flows are 176 Wm−2 K−1 and 5660 W m−2 K−1 respectively and thermal
conductivity of the brass is 102 W m−1 K−1 (see Fig. 16).

Figure 16: The temperature profile through the pipe wall.

i) Calculate overall heat transfer resistance Rtotal = (UA)−1
total . [6 marks]

Solution:
The total resistance is given by the sum of the conductive resistance and the two film
resistances:

Rtotal = Rcond . + Ri + Ro

The conductive resistance is given by

Rcond . =
ln (Router/Rinner )

2 π L k

=
ln (0.0162/0.0126)

2π L 102
=

3.921 × 10−4

L
K W−1 m−1

We also have

Ri =
1

hi Ai
=

1
5660 × π × 0.0126 L

≈ 4.463 × 10−3

L
K W−1 m−1

Ro =
1

ho Ao
=

1
176 × π × 0.0162 L

≈ 0.1116
L

K W−1 m−1

6th December 2023 Page 64 of 157



Heat, Mass, and Momentum Transfer M. Bannerman

The total is

Rtotal =
3.921 × 10−4 + 0.1116 + 4.463 × 10−3

L
=

0.1165
L

K W−1 m−1

ii) State what is the limiting heat resistance (i.e., what is the controlling heat transfer
mechanism). [2 marks]
Solution:
The convection on the outer surface of the pipe is the dominant heat transfer mechanism
as it has the highest heat transfer resistance by several orders of magnitude.

iii) Calculate heat transferred per metre length of tube at the point where the bulk tem-
peratures of the air and water streams are 326◦C and 15◦C respectively. [2 marks]
Solution:
This is given by

Q
L

=
∆T
R L

=
326 − 15
0.1165

= 2670W m−1

b) The heat transfer coefficient for air flowing over a sphere is to be determined by observing
the temperature-time history of a sphere fabricated from pure copper. The diameter of
sphere is 17 mm. The sphere is at 86◦C before it is inserted into an airstream having a
temperature of 22◦C. A thermocouple on the outer surface of the sphere indicates 62◦C
at 116 seconds after the sphere is inserted into the airstream.
Note: The properties of copper at 347K are ρ = 8933 kg m−3, Cp = 389 J kg−1 K−1, and
k = 398 W m−1 K−1.

i) Calculate the heat transfer coefficient by assuming that the lumped capacitance
method is valid. [7 marks]
Solution:
Using the equation in the datasheet:

θ

θi
=

T − T∞

Ti − T∞
= exp

[
− h As

ρV Cp
t
]

T = 62◦C, Ti = 86◦C, T∞ = 22◦C, As = π D2 = 9.079 × 10−4 m2, Vs = 4πR3/3 =
π D3/6 = 2.572×10−6 m3, t = 116 s. Substituting in the properties of copper, we have

62 − 22
86 − 22

= exp
[
−h × 116

9.079 × 10−4

8933 × 2.572 × 10−6 × 389

]
0.625 = exp

[
−h × 116

9.079 × 10−4

8933 × 2.572 × 10−6 × 389

]
0.625 = exp [−0.01178 h]

h = − ln(0.625)
0.01178

= 39.90W m−2 K−1

ii) Show that the Biot number supports the application of the lumped capacitance method.
[3 marks]

Solution:
The Biot number is defined as

Bi =
h Lc

k
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For a sphere, the characteristic length is Lc = Vs/As = 1
6πD3/πD2 = D/6. Calculating

its value we have:

Bi =
h D
6 k

=
39.9 × 0.017

6 × 389
= 2.906 × 10−4

As this value is Bi < 0.1, the lumped capacitance assumption is reasonable.

[Question total: 20 marks]

Question 38Q.38
An electric heater of 0.032 m diameter and 0.85 m in length is used to heat a room. Calculate
the electrical input (i.e. the sum of heat transferred by convection and radiation) to the heater
when the bulk of the air in the room is at 24◦C, the walls are at 12◦C, and the surface of the
heater is at 532◦C. For convective heat transfer from the heater, assume the heater is a
horizontal cylinder and the Nusselt number is given by

Nu = 0.38(Gr)0.25

where all properties are evaluated at the film temperature. You may assume air is an ideal
gas, giving β = T−1. Take the emissivity of the heater surface as ϵ = 0.62 and assume
that the surroundings are black. All other properties should be calculated using the table
provided (see Table 1). [10 marks]

T (K) µ (kg m−1 s−1) k (W m−1 K−1) ρ (kg m−3)
550 2.849 × 10−5 4.357 × 10−2 0.6418
600 3.017 × 10−5 4.661 × 10−2 0.5883
700 3.332 × 10−5 5.236 × 10−2 0.5043
800 3.624 × 10−5 5.774 × 10−2 0.4412
900 3.897 × 10−5 6.276 × 10−2 0.3922

Table 1: Physical properties of air at 1 atm for Q.38.

Solution:
Calculating the film temeprature, we have

Tf =
532 + 24

2
= 278◦C = 551 K

From the tables at 551 K, ν = 4.48×10−5 m2 s−1 and k = 0.04375 W m−1 K−1. The expansion
coefficient is β = 551−1. Combining these we have:

Gr =
9.81 (532 − 24) 0.0323

551 (4.48 × 10−5)2 ≈ 147 700

Calculating the Nusselt number, we have

Nu = 0.38 (147 700)1/4 ≈ 7.45

Calculating the convective coefficient we have

h =
k Nu

L
=

0.04375 × 7.45
0.032

≈ 10.19W m−2 K−1
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Heat transfer via convection:

Qconv = h A∆T = 10.19 × π × 0.032 × 0.85 (532 − 24) ≈ 442W

Heat transfer by radiation

Qrad . = σ ϵA
(
T 4

w − T 4
∞
)

= 5.67 × 10−8 × 0.62 × π × 0.032 × 0.85
(
8054 − 2854)

≈ 1242

Total energy input is

Qtotal = Qrad . + Qconv = 1242 + 442 = 1684 W

[Question total: 10 marks]

Question 39Q.39

A pebble-bed nuclear reactor at 69 bara is used to heat helium (4 g mol−1) as part of the
generation of electricity. The helium gas has a heat capacity at constant pressure of Cp =
5190 J kg−1 K−1, a dynamic viscosity of µ = 5.19 × 10−5 Pa s, and a thermal conductivity
of k = 0.405 W m−1 K−1 and flows at 15 m s−1. The pebbles have an outer radius of 3 cm
which consists of a 0.5 cm coating of graphite around the radioactive core.

a) Assuming helium may be treated as an ideal gas, demonstrate that the density of the gas
is 2.83 kg m−3. [3 marks]
Solution:
The density of helium from the ideal gas law is,

N
V

=
p

R T
=

69 × 105

8.314 × (900 + 273.15)
= 707 mol m−3

✓
2 which is 0.004 × 707 ≈ 2.83 kg m−3.✓1[2/3]

[1/3] b) Calculate the surface temperature of the particle if it is emitting 850 W of heat and the
surrounding helium is at 900 ◦C. The following expression for forced convective heat-
transfer around a sphere is available,

NuD = 2 + 0.47 Re1/2
D Pr0.36 for 3 × 10−3 < Pr < 10 and 102 < ReD < 5 × 104.

Radiation is neglible as all pellets have the same surface temperature, and the character-
istic length used in the Reynolds and Nusselt number is the sphere diameter. [12 marks]

Solution:
The Prandtl and Reynolds number are,

Pr =
5.19 × 10−5 × 5

0.405
≈ 0.665

Re =
2.83 × 15 × 0.06

5.19 × 10−5 ≈ 49100

✓
4 These are within the range of the expression✓

1 . The Nusselt number is,[4/12]
[1/12] NuD = 2 + 0.47 × 491001/2 × 0.6650.36 ≈ 91.9
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✓
2 The overall heat transfer coefficient is then,[2/12]

h =
NuD k

D
=

91.9 × 0.405
0.06

≈ 620 W m−2 K−1.

✓
2 Solving for the temperature difference,[2/12]

∆T =
Q

A h
=

850
4 π 0.032 × 620

≈ 121 K.

✓
2 The outer shell temperature is then 900 + 121 ≈ 1021 ◦C.✓1[2/12]

[1/12]
[Question total: 15 marks]

Question 40Q.40
A single-pass, counter-flow shell-and-tube heat exchanger is required to operate as an oil
cooler with 316 tubes of internal diameter 0.016 m, outer diameter 0.018 m, and length
5.6 m. The oil flows in the tube side entering at a mass flow rate of 32 kg s−1 at a temper-
ature of 136◦C. Cooling water in the shell side enters at a mass flow rate of 33 kg s−1 at
a temperature of 10◦C. The shell side heat transfer coefficient is 850 W m−2 K−1; and the
specific heat capacity of water is 4.187 kJ kg−1 K−1. The Nusselt number is approximately
related to the Reynolds and Prandtl numbers as follows

Nu = 0.025 Re3/4 Pr2/5 (41)

and the following property values apply: specific heat capacity of oil: 3.42 kJ kg−1 K−1; dens-
ity of oil: 900 kg m−3; dynamic viscosity of oil: 1.5 × 10−3 kg m−1 s−1; thermal conductivity
of oil: 0.15 W m−1 K−1; thermal conductivity of the steel pipe wall: 54 W m−1 K−1. Calculate:

a) The number of transfer units. [12 marks]
Solution:
Starting with the oil side, we have:

⟨v⟩ =
ṁ

ρNtubes Aflow ,inner
=

32
900 × 316 × π × 0.0082 ≈ 0.5596 m s−1

Calculating the oil side Reynolds number we have

Re =
ρ ⟨v⟩ d

µ
=

900 × 0.5596 × 0.016
1.5 × 10−3 ≈ 5372

The Prandtl number is

Pr =
µCp

k
=

1.5 × 10−3 × 3.42 × 103

0.15
= 34.2

The tube-side Nusselt number is then

Nu = 0.025 Re3/4 Pr2/5

= 0.025 × 53723/4 × 34.22/5 ≈ 64.44

The heat transfer coefficient is then

hinner =
k Nu

L
=

0.15 × 64.44
0.016

≈ 603.8W m−2K−1
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The total resistance is

(U A)−1
total = Rtotal

=
1

hinner Ainner
+

1
houter Aouter

+
ln (Router/Rinner )

2 π L k Ntubes

=
1

603.8 × 5.6 × 316 × π × 0.016
+

1
850 × 5.6 × 316 × π × 0.018

+
ln (0.018/0.016)

2π 5.6 × 54 × 316
≈ 1.862 × 10−5 + 1.176 × 10−5 + 1.962 × 10−7

≈ 3.057 × 10−5 ≈ (32710 W/K)−1

To calculate the NTU, first determine the minimum heat capacity rate. For the oil we have
Coil = ṁ Cp = 32 × 3.42 = 109.44 kW K−1. For the water we have Coil = 33 × 4.18 =
138.2 kW K−1. The NTU is then

NTU =
U A
Cmin

=
32710

109.4 × 103 ≈ 0.2990

b) The effectiveness of the heat exchanger. [3 marks]
Solution:
The effectiveness of the counter-current flow heat exchanger is given by the following ex-
pression from the data-sheet:

E =
1 − exp [−NTU(1 − Cr )]

1 − Cr exp [−NTU(1 − Cr )]

where Cr = Cmin/Cmax = 109.44/138.2 = 0.7919 is the heat capacity ratio. Completing the
equation we have

E =
1 − exp [−0.2990(1 − 0.7919)]

1 − 0.7919 exp [−0.2990(1 − 0.7919)]
≈ 0.2358 ≈ 23.58%

[Question total: 15 marks]

Question 41Q.41

Consider a pot of boiling water placed on a radiant (halogen) cooking hob. As the water
is boiling, the surface temperature of the pot will be approximately the boiling temperature.
The pot is exposed to the atmosphere and the air/surroundings are at 20◦C.

a) Calculate the natural convective heat loss from the sides of the pot given that air has a
mean molar mass of MW ≈ 29 g mol−1, a dynamic viscosity of µ ≈ 1.8 × 10−5 Pa s, a
thermal conductivity of kair ≈ 0.0257 W m−1 K−1, and a Prandtl number of Pr ≈ 0.713.

[11 marks]
Solution:
Assuming that the surface of the pot is a constant temperature of 100◦C as the water is
boiling, the film temperature is (100 + 20)/2 = 60 ◦C = 333 K. The density is then

ρ = MW
P

R T
= 29

105

8.314 × 333
= 1047 g m−3 = 1.047 kg m−3
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Figure 17: The boiling pot problem.

Using that βideal gas = T−1, we can calculate the Grashof number:

Gr
L3 =

g ρ2 β (Tw − T∞)
µ2 =

9.81 × 1.0472 × 333−1 (100 − 20)
(1.8 × 10−5)2 ≈ 7.974 × 109

Calculating this for both length scales in this case we have

GrH = 7.974 × 109 × 0.13 = 7.974 × 106 GrD = 7.974 × 109 × 0.33 = 2.153 × 108

Testing if the expression for vertical plates can be used, we have

(D/H) ≥ 35 Gr−1/4
H

0.3
0.1

≥ 35 ×
(
7.974 × 106)−1/4

3 ≥ 0.6586

As this is true, we do not need the correction factor. The Prandtl number of air is 0.713,
thus the Rayleigh number is Ra = GrH Pr ≈ 5.685 × 106. In this range of Ra, the Nusselt
number for vertical plates is given by

Nuplate = 0.59 Ra1/4 ≈ 28.81

The heat transfer coefficient is then:

h =
k Nu

H
≈ 0.0257 × 28.81

0.1
≈ 7.40 W m−2 K−1

The total heat loss is then:

Q = h A∆T
= h π D H ∆T
= 7.40 × 3.141 × 0.3 × 0.1 × 80
= 55.78 W
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b) Assume that the total heat loss from the pan is 100 W due to evaporation and radiant heat
loss to surroundings. Calculate the radiant temperature of the hob/heat-source required
to counteract the heat loss. You may assume the pan and heat-source are black-bodies
for this calculation.

The view factor between two coaxial discs is

F1→2 = 0.5
(

S −
(
S2 − 4(rj/ri)2)0.5

)
where S = 1 +

(
1 + R2

j

)
/R2

i , and the reduced radii are Ri = ri/L and Rj = rj/L. Note L is
the gap between the discs, and (ri , rj) are the radii of the two discs. [6 marks]
Solution:
Radiative heat transfer is given by the following expression:

Q = σ ϵFpot→hob Apot
(
T 4

hob − T 4
pot

)
For this system Ri = Rj = 0.15/0.03 = 5. The factor S in the view factor is:

S = 1 +
(
1 + R2

j

)
/R2

i

= 1 +
(
1 + 52) /52

= 2.04

The view factor is then

Fpot→hob = 0.5
(

S −
(
S2 − 4(rj/ri)2)0.5

)
= 0.5

(
2.04 −

(
2.042 − 4

)0.5
)

= 0.819

Solving for the heat source temperature, we have:

Thob =
(

Q
σ ϵFpot→ambient Apot

+ T 4
pot

)1/4

=
(

100
5.6703 × 10−8 × 1 × 0.819 × 3.141 × 0.152 + 3734

)1/4

Thob = 472.5 K = 200 ◦C

c) What fraction of the heat radiated from the heater hits the pot? [3 marks]
Solution:
As both the heater and the pot have the same surface area, the view factors are the same
(thanks to the reciprocity relationship). Therefore 81.9% of the radiattopm emitted hits the
pot!

[Question total: 20 marks]

Question 42Q.42
Consider an unshielded thermometer placed in a room (see Fig. 18). The walls of the house
are poorly insulated and the internal surfaces are at a temperature of 5◦C. If the thermometer
reads 20◦C and all surfaces have an emissivity of 0.9, what is the real temperature of the air?
You may assume a rough estimate of the natural convective coefficient as h ≈ 10 W m−2 K−1.
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Figure 18: An unshielded thermometer in a room with cold walls.

Solution:
At steady state, the heat gained/lost by convection must equal the heat lost/gained by convec-
tion.

Qconv . = −Qrad .

h At (Tair − Tt ) = −σ εt At
(
T 4

wall − T 4
t

)
We assume the radiation to/from the air is negligible compared to the radiation to/from the
wall.
Solving for the air temperature difference, we have

Tair − TT = −σ εt
(
T 4

wall − T 4
t

)
/h

= 5.67 × 10−8 × 0.9 ×
(
2934 − 2784) /10

≈ 7.13◦ C

The air is actually 7.13◦C warmer than the thermometer’s reading and is at 27.13◦C.

[Question end]

Question 43Q.43
The James webb telescope uses a radiation shield to reduce the heat it recieves from the
sun, earth, and moon (see Fig. 19). By what factor will the radiation be approximately
reduced by? How realistic is this estimate (what approximations are there)? Is this an over
or under estimate of the reduction in radiation? [5 marks]
Solution:
Radiative heat transfer is reduced by infinitely thin shields as follows:

Qshielded

Qunshielded
=

1
1 + N

✓
1 Here N = 5, therefore 1/6th of the radation will reach the telescope✓1 . This assumes that the[1/5]

[1/5] layers are not joined together (but in reality they are at their vertices) and that the shields
are infinite (they are not). The finite size of the shield will allow additional radiation to
escape to surroundings, and the finite thickness will add an additional conductive resistance.
My prediction is that these losses will probably exceed the conduction of heat through the
supports, leading the equation above to be an under-estimation of the heat loss. ✓

3[3/5]
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Figure 19: A mock-up of the James Webb telescope, displaying its five-layered sunshield.

[Question total: 5 marks]

Question 44Q.44
What are the reciprocity relationship and the summation rule with respect to radiative heat
transfer? How are these useful?
Solution:
The reciprocity relationship states that the view factors between two objects are related by
their area. For example:

F1→2 A1 = F2→1 A2

The summation rule states that the view factors from a single object must sum to unity:

F1→2 + F1→3 + F1→4 + ... = 1

These rules are useful as they allow a simpler way to calculate view factors in complex geomet-
ries. View factors are often the most complex part of radiation calculations.

[Question end]

Question 45Q.45
A 10 m pipe with a outer-radius of rpipe = 2.5 cm is to be insulated using a layer of insulation
with a thermal conductivity of k = 0.18 W m−1 K−1. You may assume that the external
convective heat transfer coefficient of the insulation is constant at h = 5 W m−2 K−1 and that
these two mechanisms are the only significant heat transfer resistances.

a) Write down the heat transfer equation for this system showing how the overall heat trans-
fer rate Q depends on k , rpipe, the outer radius of the pipe insulation rins., the pipe length L,
and the temperature difference ∆T between the pipe wall and the ambient air. [4 marks]
Note: The resistance to heat transfer in a cylindrical shell is:

R =
ln (router/rinner )

2π k L
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Solution:
The external convection resistance to heat transfer is

Rconv . =
1

2 π rins. L h

Summing the resistances, we have

Q = ∆T/

(
ln
(
rins./rpipe

)
2 π k L

+
1

2π rins. L h

)

b) Calculate the heat transfer rate for three thicknesses of insulation where the outer radius
of the insulation is rins. = 3.0 cm, 3.6 cm, and 4.2 cm). The surface temperature of the
pipe is 400◦C and ambient conditions are at 10◦C. [3 marks]
Solution:
Substituting in the known values, we have

Q = 2π L∆T/

(
ln
(
rins./rpipe

)
k

+
1

rins. h

)

= 2π 10 × (400 − 10)/
(

ln (rins./0.025)
0.18

+
1

rins. × 5

)
= 24500/(ln (rins./0.025) /0.18 + 0.2/rins.)

=


3190 W for rins. = 3.0
3231 W for rins. = 3.6
3205 W for rins. = 4.2

c) Explain why you observe a maximum in the heat transfer rate. [3 marks]
Solution:
There is a maximum in the heat transfer rate as, at first, the resistance to convection
decreases faster than the resistance to conduction increases. Eventually the conduction
resistance dominates.

Additional notes (not assessed/marked): The critical radius can be derived as follows:

∂Q
∂r

= 2π L∆T
∂

∂r
1/

(
ln
(
rins./rpipe

)
k

+
1

rins. h

)
Using the chain rule

∂

∂r
1/

(
ln
(
rins./rpipe

)
k

+
1

rins. h

)
= −

(
ln
(
rins./rpipe

)
k

+
1

rins. h

)−2
∂

∂r

(
ln
(
rins./rpipe

)
k

+
1

rins. h

)

= −

(
ln
(
rins./rpipe

)
k

+
1

rins. h

)−2(
1

rins. k
− 1

r 2
ins. h

)
Thus the derivative is

∂Q
∂r

= −2π L∆T

(
ln
(
rins./rpipe

)
k

+
1

rins. h

)−2(
1

rins. k
− 1

r 2
ins. h

)
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This derivative is zero when (
1

rins. k
− 1

r 2
ins. h

)
= 0

Rearranging for the critical insulation radius gives

rc =
k
h

In this case the critical radius is rc = 0.18/5 = 0.036 m or 3.6 cm.

[Question total: 10 marks]

Question 46Q.46
The potential heat loss from a distillation column to the environment must be calculated
to determine if lagging (insulation) on the column is required. The proposed design of a
distillation column can be modelled to a rough approximation as a 12 m high cylinder with
a diameter of 0.7 m. Convection and radiation are assumed to be the limiting heat transfer
processes, so it can be assumed the column surface is at the internal operating temperature
of 60◦C. The minimum ambient air temperature should be used for the calculations in order
to design for a worst-case scenario
Aberdeen ambient temperature range: −10◦C to 20◦C.
Emissivity of oxidised steel: ε ≈ 0.657

T (◦C) ρ (kg m−3) Cp (kJ kg−1 K−1) k (W m−1 K−1) ν (×10−6 m2 s−1) Pr
-50 1.534 1.005 0.0204 9.55 0.725
0 1.293 1.005 0.0243 13.30 0.715

20 1.205 1.005 0.0257 15.11 0.713
40 1.127 1.005 0.0271 16.97 0.711
60 1.067 1.009 0.0285 18.90 0.709

Table 2: Properties of Air

a) Describe the physical interpretation of the Grashof number for natural convection. De-
scribe each of its terms and write down an equation for the temperature at which temperature-
dependent terms in Gr should be evaluated. [5 marks]
Solution:
The Grashof number is the analogue of the Reynolds number for natural convection and is
the ratio of bouyancy and viscous forces in the fluid. It is defined as

Gr =
g ρ2 β (Tw − T∞) L3

µ2 ,

where g is the gravitational acceleration,
ρ is the density of the fluid,
β is the thermal expansion coefficient of the fluid,
Tw is the wall temperature,
T∞ is the fluid temperature a large distance from the wall (bulk),
L is a characterstic (and often vertical) length scale,
and µ is the fluid viscosity.
The properties of the flow for the Grashof number should be evaluated at the so-called film
temperature,

Tf = (Tw + T∞) /2 = (60 − 10) /2 = 25◦C ≈ 298K
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b) Show that the thermal expansion coefficient, defined as

β =
1
V
∂V
∂T

reduces to the following expression for an ideal gas

βig. =
1
T

Hint: Use the ideal gas equation! [2 marks]
Solution:
We know that V = N R T/P, so

β =
1
V
∂V
∂T

=
1
V
∂N R T/P

∂T

=
N R
V P

∂T
∂T

=
N R
V P

If we rearrange PV = N R T we have N R/(V P) = 1/T , giving the final result:

β =
1
V
∂V
∂T

βig. =
1
V
∂N R T/P

∂T

=
N R
V P

∂T
∂T

=
1
T

c) Calculate the Grashof number and determine the convective flow regime. State any
assumptions you make. Remember to use the correct temperature for calculating the
properties of the flow! [5 marks]
Solution:
Looking at our table of properties of air, we could interpolate for the film temperature
Tf = 25◦C. However, considering the error in convective heat transfer coefficients it is safe
enough to take the nearest temperature (20◦C).
The thermal expansion coefficient is given by

β =
1
V
∂V
∂T

However air at the ambient temperature and pressure (10◦C and 1 atm) behaves similarly
to an ideal gas, so we can use the approximation

β ≈ 1
Tf

Using these values and noting that ν = µ/ρ we have

Gr =
g (Tw − T∞) L3

Tf ν2

=
9.81 × 70 × 123

298 × (15.11 × 10−6)2

= 1.74 × 1013
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The critical Grashof number is around Gr ≈ 4×108, thus the convective regime around the
column is turbulent.

d) Calculate the convective heat transfer coefficient for the column surface. Can you use
the expression for vertical plates directly? [9 marks]
Solution:
The expressions for vertical plates can only be used for cylinders if the boundary layer
thickness is small compared to the diameter of the cylinder. The general criterion is given
as

D
L

≥ 35
Gr1/4

0.7
12

≥ 35

(1.74 × 1013)1/4

0.058 ≥ 0.017

The criterion is satisfied, so we can use the vertical plate expressions for the vertical cylinder.

The value of the Raleigh number is

Ra = Gr Pr = 1.73 × 1013 × 0.713

= 1.233 × 1013

Using Table 5, we find that we can use the following expression for the Nusselt number

Nu = 0.13 (Gr Pr)1/3

= 0.13
(
1.233 × 1013)1/3

≈ 3000

The heat transfer coefficient is given by

h =
k Nu

L

=
0.0257 × 3000

12
= 6.425 W m−2 K−1

e) Calculate the total heat lost to the environment including radiation. Compare the two
losses. [5 marks]
Solution:
The total loss of energy is calculated by summing the convective and radiative heat losses.

Q = A h (Tw − T∞) + Aσ ε
(
T 4

w − T 4
∞
)

The surface area of the cylinder (neglecting top and bottom faces) is

A = π D L = π × 0.7 × 12 ≈ 26.4 m2

substituting all of the known values into the equation we have

Q = 26.4 × 6.425 × 70 + 26.4 × 5.67 × 10−8 × 0.657
(
3334 − 2634)

= 11873 + 7388
= 19.3 kW

The convective heat loss is 60% larger than the radiative heat loss.
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f) Do you think this heat loss justifies adding insulation or lagging to the outside of the
column? [1 marks]
Solution:
The answer depends on the requirements of the design and a cost/benefit analysis! In
reality, the additional cost of lagging and the extra maintenance cost of removing it for
inspection outweighs the energy cost saved by its use. Columns often operate with a boiler
and condenser in the 0.1-1 MW range, so this heat loss is negligible.

The actual cost in lost heat is quite small. To an industrial plant, natural gas costs around
2p per kWh in 2010. Assuming there are 8000 plant operating hours in a year, the total
cost of this loss is

19 × 8000 × 2 = 304000 pence

The insulation alone may cost more than this.

g) Due to strict new environmental legislation, it is decided that the maximum acceptable
heat loss to the environment is 10 kW. Roughly calculate the maximum acceptable sur-
face temperature. [3 marks]
Solution:
We can assume our heat transfer coefficient remains the same. It only decreases for lower
temperatures, so reusing the value will give us a maximum value below the true value. This
is also true if we used the radiative heat transfer coefficient analogy in the previous question

Q = A h (Tw − T∞) + Aσ ε
(
T 4

w − T 4
∞
)

inserting the values we have

10000 = 26.4 × 6.425 (Tw − 263) + 26.4 × 5.67 × 10−8 × 0.657
(
T 4

w − 2634)
= 169.62 (Tw − 263) + 9.835 × 10−7 (T 4

w − 2634)
59300 = 169.62 Tw + 9.835 × 10−7 T 4

w

Using excel or Matlab we can solve this equation to find the maximum surface temperature
is Tw = 302 K.

This is how to solve the above problem the old fashioned way (by hand)
We could also solve this by rearranging the above equation to give

Tw =
59300 − 9.835 × 10−7 T 4

w

169.62

This is an expression for a better estimate of Tw , given a current estimate of Tw . We guess
the starting value of Tw = 330K, insert it into the above equation and calculate a new value
then repeat until the new temperature value stops changing.

h) Comment on what steps would be required to improve the accuracy of the surface tem-
perature calculation in Q. g. [2 marks]
Solution:
The problem with the above estimate is that the heat transfer coefficient is calculated using
the incorrect film temperature Tw . We need to iterate the above calculations!

Explicitly, to obtain a better estimate we need to

i) Take the current estimate for the maximum wall temperature Tw .
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ii) Calculate the film temperature Tf = (Tw + T∞) /2.

iii) Calculate the heat transfer coefficient using this film temperature (as in Q. c–d).

iv) Estimate new maximum surface temperature (as in Q. g).

v) If the new estimate is very different to the current estimate, go back to step hi.

[Question total: 32 marks]

Question 47Q.47
Write down the expressions for the Prandtl number. Define every term and describe the
physical interpretation of the dimensionless numbers.
Solution:
The Prandtl number is defined as

Pr =
µCp

k

where µ is the fluid viscosity, Cp is the fluid heat capacity and k is the thermal conductivity.
The Prandtl number is a ratio of the momentum to thermal transport in a fluid.

[Question end]

Question 48Q.48
The wall of a furnace comprises three layers as shown in Fig. 20. The first layer is refractory
brick (whose maximum allowable temperature is 1400◦C) while the second layer is insulation
(whose maximum allowable temperature is 1093◦C). The third layer is a plate of 6.35 mm
thickness of steel (ksteel = 45 W m−1 K−1). Assume that the layers are thermally bonded.

Figure 20: Construction of a furnace wall.

Layer T = 37.8◦C T = 1093◦C
Brick 3.12 W m−1 K−1 6.23 W m−1 K−1

Insulation 1.56 W m−1 K−1 3.12 W m−1 K−1

Table 3: Thermal conductivities for Q. 48.

The temperature T0 on the inside of the refractory is 1370◦C, while the temperature on
the outside of the steel plate is 37.8◦C. the heat loss through the furnace wall is expected
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to be 15800 W m−2. Determine the thickness of refractory and insulation that results in
the minimum total thickness of the wall. You may use the temperature dependent thermal
conductivities given in Table 3. [14 marks]
Solution:
First, we can work out the temperature T2:

T2 =
q X2−3

ksteel
+ T3 =

15800 × 0.00635
45

+ 37.8 = 40◦C

The wall thickness is given by X1−2 + X2−3. These are calculated using

Xi−j =
k
q

(Ti − Tj)

We’re therefore searching for the minimum of

X1−3 = q−1 (kbrick (T0 − T1) + kinsulation (T1 − T2))

= q−1 (kbrick T0 + (kinsulation − kbrick )T1 − kinsulation T2)

Clearly, T1 should be as large as possible as kinsulation − kbrick is negative. The maximum T1 can
be is 1093◦C as specified by the insulation limits.
The value of thermal conductivity used for the insulation should span the full temperature
range from 40 → 1093◦C. The most sensible choice given the available information is to use
the average kinsulation ≈ (1.56 + 3.12)/2 ≈ 2.34 W m−1 K−1.

X1−2 =
kinsulation

q
(T1 − T2) =

2.34
15800

(1093 − 40) ≈ 0.156 m

The brick temperature is close enough that the single value 6.23 W m−1 K−1 could be used
by the students but a better estimate would result from linear extrapolation to give kbrick ≈
7.05 W m−1 K−1 at T = 1370◦C. This can be averaged over the operating range to give kbrick ≈
(6.23 + 7.05)/2 ≈ 6.64 W m−1 K−1. The brick thickness is then given by

X0−1 =
kbrick

q
(T0 − T1) =

6.64
15800

(1370 − 1093) ≈ 0.116 m

The total wall thickness is then ≈ 0.278 m.

[Question total: 14 marks]

Question 49Q.49
In prilling towers, molten fertilizer slurry is dripped to form frozen spherical pellets called
prills. As a first approximation to understanding the heat transfer from the falling prills, con-
sider a heated sphere of radius, R, and fixed surface temperature, TR, suspended in a large,
motionless body of fluid.

a) Set up the differential equation describing the temperature, T , in the surrounding fluid as
a function of r , the distance from the center of the sphere. The thermal conductivity, k , of
the fluid is considered constant. [14 marks]
Solution:
If we assume there is no pressure dependence of the internal energy of the fluid✓

2 we can use[2/14]
the energy balance equation (see Eq.(68)):

ρCp
∂T
∂t

= −ρCp vj ∇j T −∇i qi − τji ∇j vi − p ∇i vi + σenergy

6th December 2023 Page 80 of 157



Heat, Mass, and Momentum Transfer M. Bannerman

✓
1 Assuming the fluid is motionless (v = 0) steady state, and no heat generation, we have✓3[1/14]

[3/14]

�
�
�
��>

0

ρCp
∂T
∂t

= −
�������:0
ρCp vj ∇j T −∇i qi −�����:0

τji ∇j vi −����:0p ∇i vi + ����:0σenergy

∇i qi = 0

✓
1 Using spherical coordinates we have[1/14]

1
r 2

∂

∂r
(
r 2 qr

)
+

1
r sin θ

∂

∂θ
(qθ sin θ) +

1
r sin θ

∂ qϕ

∂ϕ
= 0

✓
1 Assuming the system is rotationally symmetric we can state that nothing changes in the θ[1/14]
or ϕ directions to cancel the derivatives OR note that there is no transport in these directions
to give:✓2[2/14]

1
r 2

∂

∂r
(
r 2 qr

)
= 0

✓
2 Inserting Fourier’s law and noting the thermal conductivity is constant we have[2/14]

− ∂

∂r
r 2 k

∂T
∂r

= 0

∂

∂r
r 2∂T

∂r
= 0

✓
2[2/14]

b) Integrate the differential equation and use these boundary conditions to determine the
integration constants: at r = R, T = TR; and at r = ∞, T = T∞. [8 marks]
Solution:
Integrating the equation once, we have

∂

∂r
r 2∂T

∂r
= 0

∂T
∂r

=
C1

r 2

✓
2 Integrating again, we have[2/8]

T =
C1

r
+ C2

✓
2 Using the boundary conditions, we have at r = ∞, T = T∞ which gives C2 = T∞. For r = R[2/8]
and T = TR we have✓2[2/8]

TR =
C1

R
+ T∞

C1 = R (TR − T∞)

T = T∞ + (TR − T∞)
R
r

✓
2[2/8]
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c) From the temperature profile, obtain an expression for the heat flux at the surface. Equate
this result to the heat flux given by “Newton’s law of cooling” and show that a dimension-
less heat transfer coefficient (known as the Nusselt number) is given by,

Nu =
h D
k

= 2,

in which D is the sphere diameter. [12 marks]
Solution:
The heat flux is given by substituting the temperature profile into Fouriers law OR by
tracking the constants in the derivation above:✓2[2/12]

q = −k
∂T
∂r

q = k (TR − T∞)
R
r 2

✓
2 At the surface we have[2/12]

q =
k
R

(TR − T∞)

✓
2 Comparing this to Newton’s law of cooling[2/12]

q =
Q
A

= h∆T

=
k
R

(TR − T∞)

h =
k
R

✓
3 Inserting this into the Nusselt number, we have[3/12]

Nu =
h D
k

=
k D
R k

= 2

✓
3[3/12]

[Question total: 34 marks]

Question 50Q.50
A black-body car is left in direct sunlight at midday which (at the lattitude of the UK) can be
approximated as a constant heat flux qsun = 1000 W m−2. The car’s surface temperature
reaches steady state with its surroundings and is approximately constant. The car has a
surface area of 26 m2 but only 8 m2 are exposed to sunlight.

a) Assuming that the ambient temperature is 15◦C and that radiation is the only heat trans-
fer mechanism, calculate the surface temperature of the car. Is the estimate realistic?

[5 marks]
Solution:
At steady state, the flux of energy into the car from the sunlight is equal to the energy lost
through radiation:

Asun qsun = Acar qrad = σ Acar ε
(
T 4

car − T 4
∞
)
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We have ε = 1 as the car is black and σ = 5.6703 × 10−8 W m−2 K−4 from the data sheet.
Substituting in the knowns, we have

8 × 1000 = 26 × 5.6703 × 10−8 (T 4
car − 288.154)

T 4
car =

8000
26 × 5.6703 × 10−8 + 288.154

Tcar = 333 K = 60 ◦C

This temperature is fairly realistic for cars in the UK on hot summer days.

b) Using the previous estimate for the surface temperature, estimate the heat flux due to
natural convection and comment on its magnitude. You may approximate the sides of
the car as a vertical wall 12 m wide and 1.5 m high. You may assume the following
properties of air at these conditions. State why natural convection from the top of the car
is insignificant when compared to the sides. [8 marks]

ρ (kg m−3) k (W m−1 K−1) µ (kg m−1 s−1) Cp (J mol−1 K−1) Avg. Mol.
Weight
(g mol−1)

1.225 0.026 1.827 × 10−5 29.19 29

Solution:
First we must calculate the Grashof number, but we need the thermal expansion coefficient.
We can quickly derive it from the ideal gas equation and the identity in the datasheet

β =
1
V

∂V
∂T

=
1
V

∂

∂T
n R T

P
=

n R
P V

=
1
T

Or simply remember that β = 1/T for an ideal gas. This must be evaluated at the film
temperature Tf = (Twall +T∞)/2 = (60+15)/2 = 37.5 ◦C= 311 K. The L term in the Grashof
number is the plate height, as the height is the characteristic length for convection.

Gr =
g ρ2 β (Tw − T∞) L3

µ2

=
9.81 × 1.2252(60 − 15)1.53

311 × (1.827 × 10−5)2

≈ 2.1537 × 1010

Converting Cp to kJ kg−1 K−1, we have Cp = 29.19/29 = 1.007 kJ kg−1 K−1. Calculating
the Prandtl number

Pr =
µCp

k
=

1.827 × 10−5 × 1.007 × 103

0.026
≈ 0.71

The Rayleigh number is then

Ra = Pr Gr = 0.71 × 2.1537 × 1010 = 1.529 × 1010

Looking in the datasheet, this corresponds to the following expression for the Nusselt number

Nu = 0.13 (Ra)1/3 = 0.13 × (2.1537 × 1010)1/3 ≈ 361.7
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This gives a heat transfer coefficient of

h =
Nu k

L
=

361.7 × 0.026
1.5

≈ 6.27 W m−2 K−1

The convective heat transfer is then

Qconv . = h A (Twall − T∞) = 6.27 × 1.5 × 12 (60 − 15) = 5079 W

The natural convective heat transfer is realtively large compared to the radiant heat transfer,
therefore this needs needs to be solved implicitly (i.e., via iterations to find the true surface
temperature).

This neglects convection from the horizontal surfaces as it is typically much smaller than
from vertical surfaces as circulating flow is more difficult to establish in that case.

c) Discuss how you might improve the accuracy of the calculations, and what the effect of
setting the car in motion will be. [2 marks]
Solution:
The accuracy may be improved by finding a better approximation for the car surface for
the convection calculations, specifying realistic emissivities for the car surface, and solving
for the radiation and convection fluxes simulateously.

If the car is set in motion, the natural convection will become a forced convection, greatly
increasing the heat transfer rate of this mode. It is likely that this will cause the car surface
to cool even further.

[Question total: 15 marks]

Question 51Q.51
The wall of a furnace was measured to be at a temperature of Tw = 60 ◦C when the ambient
air temperature is at T∞ = 10 ◦C. The wall is 3 m high, 5 m wide, and has a surface emissivity
of ε = 0.7. The properties of air are given in the table below.

µ 1.78 × 10−5 Pa s ρ 1.2 kg m−3

k 0.02685 W m−1 K−1 Cp 1.005 kJ kg−1 K−1

a) Determine the convective flow regime of the air, noting that the critical Grashof number
is Gr ≈ 4 × 108.
Solution:
Here we must calculate the Grashof number. The key characteristics are :

• The thermal compressibility β is given by β = 1/T for an ideal gas, which is a good
approximation for atmospheric air.

• The properties in the Grashof number should be evaluated at the film temperature
Tf = (Tw + T∞) /2.

• The above rule only applies to the thermal compressibility in this question, as the other
properties are unavailable.

• For a vertical plate/wall, the characteristic length is the height of the wall.

Using this knowledge we can calculate the thermal compressibility to be

β ≈ 1
Tf

=
2

Tw + T∞
=

2
333.15 + 283.15

≈ 0.0032
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We can now evaluate the Grashof number

Gr =
g ρ2 β (Tw − T∞) L3

µ2

=
9.81 × 1.22 × 0.0032 (60 − 10) 33

(1.78 × 10−5)2

≈ 1.93 × 1011

The convective flow is turbulent as Gr ≫ 4 × 108.

b) Calculate the heat lost through the furnace wall. Remark on the relative magnitudes of
the two heat transfer mechanisms involved.
Solution:
For the convective heat transfer, we must calculate a convective heat transfer coefficient
using the relations given in the data sheet. The Prandtl number for the flow is

Pr =
Cp µ

k
=

1.005 × 103 × 1.78 × 10−5

0.02685
≈ 0.666

The Rayleigh number of the flow is

Ra = Gr Pr = 1.93 × 1011 × 0.666 ≈ 1.29 × 1011

For this Rayleigh number, the relation to the Nusselt number given in the datasheet is

Nu = 0.13 Ra1/3 = 0.13 ×
(
1.29 × 1011)1/3 ≈ 657

The heat transfer coefficient is then given by

hconvective =
k Nu

L
=

0.02685 × 657
3

≈ 5.88W m−2 K−1

The heat flux due to convection is

Qconvective = A hconvective (Tw − T∞)
= 3 × 5 × 5.88 (60 − 10) ≈ 4410 W

The heat lost through radiation is given by

Qradiation = Aσ ε
(
T 4

w − T 4
∞
)

= 3 × 5 × 5.67 × 10−8 × 0.7
(
3334 − 2834) ≈ 3500 W

The heat loss from the furnace wall is mainly lost through convection, but both effects are
comparable.

END OF EG40JK QUESTIONS
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[Question end]

Question 52Q.52
A new type of one-coat spray paint is being developed which flows to precisely the minimum
thickness required for a uniform coat. To achieve this property, the paint must effectively be
a Bingham plastic.

a) Balance the total gravitational force (ρgy ) against the viscous force on a vertical plate to
derive the following force balance for the stress at the wall surface:

τboundary = Zρgy

Solution:
The total force due to gravity on the film of liquid is

X Y Zρgy

The total stress on the surface of the plate is given by

X Y τboundary

where X Y is the surface area of the vertical plate. If the system is at steady state, then
these forces are in balance and we have:

X Y τboundary = X Y Zρgy

τxy = Z ρgy

b) Assuming that the paint has a density of 900 kg m−3, what yield stress (τ0) is needed to
ensure the paint has a maximum static thickness of 2 mm?
Solution:
The stress is at a maximum at the wall, therefore we need a yield stress at the wall which
is exactly the stress caused by a 2 mm film of paint.

τ0 = τboundary = Y ρgy

= 0.002 × 900 × 9.81

≈ 17.66 N m−2 =≈ 17.66 Pa

Remember to give the correct units! For comparison, here is a table of yeild stresses for real
pseudoplastic fluids:

Fluid τ0 (Pa)
Ketchup 15
Salad Dressing 30
Mayonnaise 100
Hair Gel 135

[Question end]
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Question 53Q.53
When manufacturing a plastic toy, a polypropylene melt with a density of 739 kg m−3 is to
be extruded through a pipe with a length of 1 m and a diameter of 2.5 cm into a die. A shear
rate of 1000 s−1 is expected at the die lips and experiments at this shear rate have measured
an apparent viscosity of 10 N s m−2.

a) A Power-Law model with an exponent of n = 0.35 is thought to be a suitable model for
the viscous behaviour. Assuming this is true, determine the consistency coefficient k and
write down the rheological stress-strain equation for the fluid. [3 marks]
Solution:
We can equate Newton’s law and the Power-law model to find the following expression in
terms of the apparent viscosity µapparent .

τxy = −µapparent
∂vx

∂y
= −k

∣∣∣∣∂vx

∂y

∣∣∣∣n−1
∂vx

∂y

Assuming that at a shear rate of ∂vx/∂y = 1000 s−1, we have an apparent viscosity of
µapparent = 10 N s m−2 and the flow index is n = 0.35, we have the following expression

µapparent = k
∣∣∣∣∂vx

∂y

∣∣∣∣n−1

10 = k 1000−0.65

k ≈ 891

The rheological equation for the fluid is then given by the Power-Law model with the
coefficients inserted in

τxy = −891
∣∣∣∣∂vx

∂y

∣∣∣∣−0.65
∂vx

∂y

b) What is the type of this fluid and how will it respond to increasing rates of shear? Describe
this using the concept of the apparent viscosity. [2 marks]
Solution:
The equation above can be rewritten to give an expression for the apparent viscosity µapparent

as a function of shear rate.

µapparent = k
∣∣∣∣∂vx

∂y

∣∣∣∣n−1

This fluid is shear thinning as n < 1, and the apparent viscosity will reduce as the shear
rate increases.

c) Sketch two graphs to illustrate the differences between the velocity profile of this fluid and
a Newtonian fluid, and between this fluid and a Bingham plastic fluid. [5 marks]
Solution:
Here, we’re just going to steal the graph from the slides, but in this question you only need
to draw the shear thinning, Newtonian and Bingham plastic flow profiles.
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The key concepts to highlight are
- The drawings of the velocity profiles
- The parabolic flow profile of a Newtonian fluid
- The blunter flow profile of a shear thinning fluid
- The solid core of a Bingham fluid

d) Derive the following expression for the Reynolds number in Power-Law fluids.

ReMR =
8 ρ ⟨v⟩2−n Rn

k

( n
3 n + 1

)n

Hint: the Metzner-Reed Reynolds number is defined through the friction factor relation,

Cf =
16

ReMR
.

The volumetric flow equation for a laminar power-law fluid is available in the datasheet
(see Eq. (69)). [7 marks]
Solution:
We need to express the Reynolds number as a function of the desired variables. Take the
above definition of the friction factor and substitute it into the Darcy-Wiessbach equation
to give

−∆p
L

=
16 ρ ⟨v⟩2

ReMR R

Rearranging for the Reynolds number we have

ReMR = −16 ρ ⟨v⟩2 L
R ∆p

Now we need to eliminate the pressure loss and pipe length terms by expressing it in the
desired variables.

The volumetric flow rate for a Power Law fluid is given in the data sheet as

V̇ =
n π R3

3 n + 1

(
R
2 k

) 1
n
(
−∆p

L

) 1
n
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The area of the flow is A = π R2, therefore the average flow rate is given by

⟨v⟩ =
V̇
A

=
n R

3 n + 1

(
R
2 k

) 1
n
(
−∆p

L

) 1
n

Rearrange this equation to give an expression for the pressure drop in terms of the desired
variables

−∆p
L

=
2 k
R

(
3 n + 1

n R

)n

⟨v⟩n

We can substitute this into the equation for the Reynolds number to give

ReMR =
16 ρ ⟨v⟩2

R
R
2 k

(
n R

3 n + 1

)n

⟨v⟩−n

And cleaning up gives

ReMR =
8 ρ ⟨v⟩2−n Rn

k

( n
3 n + 1

)n

e) If a volumetric flow rate of 0.1 m3 h−1 is required, determine if the flow is laminar in the
pipe and calculate the pressure drop. [3 marks]
Solution:
The average flow velocity is

⟨v⟩ =
V̇
A

=
0.1

3600
1

π 0.01252 ≈ 0.057 m s−1

The Reynolds number is then given by

ReMR =
8 ρ ⟨v⟩2−n Rn

k

( n
3 n + 1

)n

=
8 × 739 × 0.0571.65 × 0.01250.35

891

(
0.35

3 × 0.35 + 1

)0.35

≈ 6.8 × 10−3

The transition Reynolds number (Re(c)
MR ≈ 2300) is approximately the same for Power-Law

and Newtonian fluids, so this flow is laminar.

The pressure drop can be calculated using the Darcy-Weisbach equation.

−∆p =
16 ρ ⟨v⟩2 L

ReMR R

=
16 × 739 × 0.0572 × 1
6.8 × 10−3 × 0.0125

≈ 452 kPa

[Question total: 20 marks]
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Question 54Q.54
A non-Newtonian fluid flows through a 20 m length pipe with a diameter of 25 mm. Its
apparent viscosity is 0.1 N s m−2 at a shear rate of 1000 s−1 and its density is estimated to
be 1600 kg m−3.

a) If the flow index n is 0.33, show that the consistency k is 10 if the Power Law model
applies. Give the rheological equation for the fluid. [3 marks]
Solution:
We can equate Newton’s law and the Power-law model to find the following expression in
terms of the apparent viscosity µapparent .

µapparent

∣∣∣∣∂vx

∂y

∣∣∣∣ = k
∣∣∣∣∂vx

∂y

∣∣∣∣n (42)

Assuming that at a shear rate of ∂vx/∂y = 1000 s−1, we have an apparent viscosity of
µapparent =0.1 N s m−2 and the flow index is n = 0.33, we have the following expression

0.1 × 1000 = k 10000.33

k ≈ 10.2

The rheological equation for the fluid is then given by the Power-Law model with the
coefficients inserted in, either expressed in terms of stress magnitude:

|τxy | = 10.2
∣∣∣∣∂vx

∂y

∣∣∣∣0.33

or making the sign of the stress explicit:

τxy = −10.2
∣∣∣∣∂vx

∂y

∣∣∣∣−0.66
∂vx

∂y

b) What type of fluid is this and how will it respond to increasing rates of shear? [3 marks]
Solution:
Rearranging Eq. (42) to obtain an expression for the apparent viscosity, we have

µapparent = k
∣∣∣∣∂vx

∂y

∣∣∣∣n−1

If n < 1, the apparent viscosity will decrease as the shear rate increases. This means the
fluid is shear-thinning.

c) If a flow-rate of 1 m3 hr−1 is required, show that the flow would be laminar and calculate
the pressure drop. [5 marks]
Note: The definition of the Metzner-Reed Reynolds number for Power-Law fluids in pipes
is given by

ReMR = 8
( n

6 n + 2

)n ρ ⟨v⟩2−n Dn
H

k

Solution:
First, we need the average flow velocity. This is defined as the volumetric flow divided by
the cross sectional area of the flow.
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The flow rate in standard units is 1/3600 m3 s−1 and the pipe radius is R = 0.025/2 =
0.0125 m. The average velocity is then

⟨v⟩ =
V̇

Aflow

=
1

3600
1

π0.01252

≈ 0.57m s−1

We can then calculate the Reynolds number and we find

ReMR = 8
(

0.33
6 × 0.33 + 2

)0.33 1600 × 0.572−0.330.0250.33

10.2
≈ 65

The fluid becomes turbulent around ReMR ≈ 2000, so this flow is certainly laminar.

On to the pressure drop. For laminar flow we have the following definition for the Fanning
friction factor

Cf =
16

ReMR

≈ 0.25

The pressure drop is then given by

−∆p =
Cf L ρ ⟨v⟩2

R

=
0.25 × 20 × 1600 × 0.572

0.0125
≈ 207936 Pa

The pressure drop is approximately 208 kPa.

d) Roughly sketch the flow profile for this fluid comparing it to the sketch of a Newtonian
fluid and a Bingham-plastic fluid. Explain the differences between the profiles. [3 marks]

Solution:
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The key features are that the Newtonian flow has a parabolic profile, whereas the shear
thinning fluid is “blunter” as the apparent viscosity is higher in the centre. The Bingham
plastic is different again as it has a solid core in the centre of the flow.

[Question total: 14 marks]

Question 55Q.55
An incompressible polymeric fluid is to flow through 10 m of 50 mm inner-diameter piping.
The flow index, n, for the fluid is 0.3 and the apparent viscosity, µ, at a shear rate of 1000 s−1

is 0.1 Pa s.

a) What type of fluid is this? Give a general description of its viscosity and include a sketch
of the stress-rate versus strain graph and give the numerical expression for the stress τxy .

[8 marks]
Solution:
This is a shear thinning fluid as n < 1.

To determine the numerical expression, we must determine the power law parameter k :

µapparent = k
∣∣∣∣∂vx

∂y

∣∣∣∣n−1

Inserting what is known, we have

0.1 = k (1000)0.3−1

k = 0.1 (1000)0.7 = 12.59

The expression for the stress is then one of the following

τxy = −k
∣∣∣∣∂vx

∂y

∣∣∣∣n−1(
∂vx

∂y

)
|τxy | = k

∣∣∣∣∂vx

∂y

∣∣∣∣n
where k = 12.59 and n = 0.3.

b) Assuming the flow is laminar, what is the frictional pressure loss if the volumetric flow rate
required at the end of the pipe is 0.005 m3 s−1? [5 marks]
Solution:
From the data-sheet we have:

V̇ =
n π R3

3 n + 1

(
R
2 k

) 1
n
(
−∆p

L

) 1
n
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Rearranging for the pressure loss we have:

∆p
L

= −
(

V̇
3 n + 1
n π R3

)n( R
2 k

)−1

= −
(

0.005
3 × 0.3 + 1
0.3 π 0.0253

)0.3( 0.025
2 × 12.59

)−1

= −7014 Pa m−1

Given the pipe is 10 m long, the total pressure drop is 70140 Pa or 0.7 bar.

c) Using the Metzner-Reed Reynolds number, would you expect the flow in the pipe to be
laminar or turbulent? The standard transition value for the Reynolds numer applies and
you may assume a fluid density of 1500 kg m−3. [4 marks]
Solution:
From the datasheet, we have

ReMR = −16 L ρ ⟨v⟩2

R ∆p

The flow velocity is

⟨v⟩ =
V̇
πR2 =

0.005
π0.0252 = 2.546 m s−1

ReMR = −16 ρ ⟨v⟩2

R
L
∆p

=
16 × 1500 × 2.5462

0.025
7014−1

= 887.2

This indicates the flow is highly likely to be laminar.

d) How does the velocity profile in this pipe compare to one carrying a Newtonian fluid?
Illustrate your answer with an appropriate diagram. [3 marks]
Solution:
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The key concepts to highlight are
- The drawings of the velocity profiles
- The parabolic flow profile of a Newtonian fluid
- The blunter flow profile of a shear thinning fluid

[Question total: 20 marks]

Question 56Q.56
Consider the flow profile of a incompressible, Newtonian fluid through a horizontal annnulus
(see Fig. 21).

Figure 21: Axial flow in an annulus (pipe in pipe).

The velocity profile was derived in Q.18, and is given by the following equation.

vz = −∆p R2

4 Lµ

(
r 2

R2 − κ2 − 1
logκ

log
( r

R

)
− 1
)

a) Derive the following expression for the volumetric flow rate as a function of pressure drop.

V̇z =
π∆p (1 − κ2) R4

8 Lµ

[
1 + κ2 +

(
1 − κ2

)
logκ

]
Hint: You may need the following identity obtained from integration by parts.∫

x log(x) dx =
x2 log(x)

2
− x2

4
+ C

Solution:
The definition of the volumetric flowrate in cylindrical coordinates is given by integrating
the velocity over the cross-sectional area of the flow

V̇z =
∫ R

κR

∫ 2π

0
r vz(r ) dθ dr

= 2π

∫ R

κR
r vz(r ) dr

= −π∆p R2

2 Lµ

∫ R

κR
r
(

r 2

R2 − κ2 − 1
logκ

log
( r

R

)
− 1
)

dr
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We can do the integration now, but it’s neater to make the change of variables x = r/R
(which gives dr = R dx). This gives us

V̇z = −π∆p R2

2 Lµ

∫ R

κR
r
(

r 2

R2 − κ2 − 1
logκ

log
( r

R

)
− 1
)

dr

= −π∆p R2

2 Lµ

∫ 1

κ

R2 x
(

x2 − κ2 − 1
logκ

log x − 1
)

dx

= −π∆p R4

2 Lµ

∫ 1

κ

(
x3 − κ2 − 1

logκ
x log x − x

)
dx

= −π∆p R4

2 Lµ

[
x4

4
− κ2 − 1

logκ

(
x2 log x

2
− x2

4

)
− x2

2

]1

κ

Substituting in the integration limits, we have

V̇z = −π∆p R4

2 Lµ

[
1 − κ4

4
+

1 − κ2

logκ

(
−κ2 logκ

2
− 1 − κ2

4

)
− 1 − κ2

2

]
Comparing our current result to the answer, we see there is a factor 1/4 to be extracted.
Taking this out and expanding the terms gives

V̇z = −π∆p R4

8 Lµ

[
1 − κ4 − 2 (1 − κ2)κ2 −

(
1 − κ2

)2

logκ
− 2(1 − κ2)

]

= −π∆p R4

8 Lµ

[
κ4 − 1 −

(
1 − κ2

)2

logκ

]

Noting that 1 − κ4 = (1 − κ2)(1 + κ2), we can write the final form

V̇z =
π∆p (1 − κ2) R4

8 Lµ

[
1 + κ2 +

(
1 − κ2

)
logκ

]

b) Derive the following expression for the mean flow velocity, ⟨vz⟩.

⟨vz⟩ =
∆p R2

8 Lµ

[
1 + κ2 +

(
1 − κ2

)
logκ

]

Solution:
Straightforward question. Take the previous expression and divide it by the cross sectional
area of the flow.

⟨vz⟩ =
V̇z

Aflow

The cross sectional area of the annulus is

Aflow = π R2 (1 − κ2)
Straightforward division gives the result

⟨vz⟩ =
∆p R2

8 Lµ

[
1 + κ2 +

(
1 − κ2

)
logκ

]
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c) One method to generalise the definition of the Reynolds number is to use a hydraulic
diameter, DH = 4 Aflow/Pw , in place of the diameter:

ReH ≡ ρ ⟨vz⟩ DH

µ

Use this definition to calculate the following expression for the Reynolds number of a
incompressible, Newtonian fluid through a horizontal annnulus:

ReH ≡ 2 ρ ⟨vz⟩ R (1 − κ)
µ

Solution:
The cross-sectional area of the flow is Aflow = π R2

(
1 − κ2

)
, and the wetted perimeter is

Pw = 2π R (1 + κ). The hydraulic diameter is then:

DH = 4 Aflow/Pw

= 4
π R2

(
1 − κ2

)
2π R (1 + κ)

= 2 R
1 − κ2

1 + κ

= 2 R
(1 − κ)(1 + κ)

1 + κ
= 2 R(1 − κ)
= Douter − Dinner

Inserting this into the above expression for the Reynolds number, we have

ReH ≡ 2 ρ ⟨vz⟩ R (1 − κ)
µ

d) Describe (not derive) how Metzer-Reed generalised the definition of the Reynolds num-
ber (what did they do to fix the definiton of Re)?

ReMR = −8 ρ ⟨v⟩2 Pw L
Aflow ∆p

Using this approach, derive the following expression for the Metzner-Reed Reynolds
number of a incompressible, Newtonian fluid through a horizontal annnulus.

ReMR = −2 ρ ⟨v⟩ R
µ

[
1 + κ2

1 − κ
+

1 + κ

logκ

]
Solution:
The Metzner-Reed Reynolds number is defined through the fanning friction factor. Spe-
cifically, Metzner-Reed declared that for all flow geometries and viscous models, the laminar
value of the friction factor is Cf = 16/ReMR. Taking the expression for the Metzner-Reed
Reynolds number:

ReMR = −8 ρ ⟨v⟩2 Pw L
Aflow ∆p

= −32 ρ ⟨v⟩2 L
∆p

Pw

4 Aflow
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Noticing the 4 Aflow/Pw factor, which is equal to the hydraulic diameter, we can immediately
subsitute in the result derived in the previous question (DH = 2 R(1 − κ)).

ReMR = −16 ρ ⟨v⟩2

R(1 − κ)
L
∆p

Now we need to substitute in our expression for the pressure drop in terms of the mean flow
velocity from Q. b.

⟨vz⟩ =
∆p R2

8 Lµ

[
1 + κ2 +

(
1 − κ2

)
logκ

]

Rearranging for the inverse pressure drop, we have

L
∆p

=
R2

8 ⟨vz⟩ µ

[
1 + κ2 +

(
1 − κ2

)
logκ

]

Substituting this into the expression for the Reynolds number, we have:

ReMR = −16 ρ ⟨v⟩2

R(1 − κ)
L
∆p

= −16 ρ ⟨v⟩2

R(1 − κ)
R2

8 ⟨vz⟩ µ

[
1 + κ2 +

(
1 − κ2

)
logκ

]

= − 2 ρ ⟨v⟩
(1 − κ)

R
µ

[
1 + κ2 +

1 − κ2

logκ

]
= −2 ρ ⟨v⟩ R

µ

[
1 + κ2

1 − κ
+

1 + κ

logκ

]
Where again, we factored the term (1 − κ2) = (1 − κ)(1 + κ).

e) Comment on the two definitions of the Reynolds numbers and discuss which is “better”?
Solution:
No hard and fast “right” answer here, I just want you to demonstrate that you understand
the problems of multiple definitions of the Reynolds numbers. My “perfect” answer follows:

Neither Reynolds number is strictly correct, as there are an infinite number of definitions
of Re that we can make for flows in annuli. The reason for this is that I have two length
scales Dinner = κR and Douter = R, but I only need one for the D term in Re = ρ ⟨v⟩ D/µ.

I could write D = Dinner + Douter or D = 100 D2
inner/Douter and Re is still dimensionless.

However, the Metzner-Reed has a nice symmetry about it. It ensures that all laminar friction
factors have the same definition. If the friction factor is a fundamental property of fluid
flow, we might be lucky and find that its more general than the geometry or viscous model.
Unfortunately, the research literature indicates that the turbulence transition region is not
symmetric (constant) for the Metzner-Reed definiton.

[Question end]
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Question 57Q.57
Fick’s law is often modified to the following form:

NA,x = − (DAB + ED)
∂CA

∂x

What is the parameter ED and what does it represent?
Solution:
ED is the eddy diffusivity. It represents the additional transport of the species A through B due
to small eddies/circulating currents (caused by microscopic differences in temperature/pressure)
which causing the fluid to mix and appear to diffuse faster than expected.

[Question end]

Question 58Q.58
Consider the dimensionless Lewis number:

Le =
k

ρCp DAB

What two transport processes are compared through this number and what does the limit
Le → ∞ correspond to?
Solution:
This number is a comparision of the thermal and mass diffusivity. At the limit Le → ∞,
diffusion is negligble when compared to thermal diffusivity (i.e. in a solid).

[Question end]

Question 59Q.59
Gaseous hydrogen at 10 bar and 27◦C is stored in a 140 mm outer-diameter tank having
a steel wall 2 mm thick and a height of 850mm. The molar concentration of hydrogen in
the steel is 1.5 kmol m−3 at the inner surface and neglible at the outer surface, while the
diffusion coefficient of hydrogen in steel is approximately 0.3 × 10−12 m2 s−1. What is the
rate of mass loss of hydrogen by diffusion per square meter of tank wall? Assume steady-
state, one-dimensional conditions.

a) Assuming the curvature of the tank is negligible (you can use rectangular coordinates),
show that the molar flux of hydrogen is constant through the wall.

NH2,z = NH2,0

Solution:
There are two ways we can derive the general balance equation for this problem:

General Balance Equation Approach
The general balance equation for a species a is

∂Ca

∂t
= −∇i Na

As we are using rectangular coordinates and using a = H2, we can write

∂CH2

∂t
= −∇x NH2,x −∇y NH2,y −∇z NH2,z
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We are at steady state, and as we assume that the system is one dimensional (symmetric in
the x and y dimensions), we can cancel most terms to give

�
�
���

0
∂CH2

∂t
= −�����:0∇x NH2,x −�����:0∇y NH2,y −∇z NH2,z

Leaving us with the final equation

∇z NH2,z =
∂NH2,z

∂z
= 0

We can integrate this to obtain

NH2,z = C

This is a statement that for a flat plate at steady state the molar flux is a constant value.
This constant value is the flux at some point in the system, so we choose z = 0 to give
C = NH2,0.

NH2,z = NH2,0

Shell Balance Approach
We perform a balance for hydrogen on a thin slab of steel located within the wall of the
tank. The bottom of the slab is at z, the thickness of the slab is ∆z, and the area of the
slab is A. We assume that we are at steady state, so there is no accumulation. Therefore,
we expect that the influx of hydrogen should equal the outflux:

NH2,z(z) A − NH2,z(z + ∆z) A = 0
NH2,z(z + ∆z) − NH22,z(z)

∆z
= 0

Taking the limit ∆z → 0, we find

∂NH2,z

∂z
= 0

Integrating this equation, we find

NH2,z = C

From this point on the arguments are the same as for the general balance equation approach.

b) Noting that the concentration of hydrogen in the steel wall is very low xH2 ≪ 1, determine
the concentration profile of hydrogen in the wall.
Solution:
If the concentration of hydrogen is small, then we can use Fick’s law of diffusion directly.

NH2,z = NH2,0 = −DH2

∂CH2

∂z
We can determine the concentration profile using a single integration

∂CH2

∂z
= −NH2,0

DH2

CH2 = −NH2,0

DH2

z + C1

=
NH2,0

DH2

(C2 − z)
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where we’ve redefined the unknown constant to bring it into the parenthesis. Now we need
to use the boundary conditions to determine the values of the constants NH2,0 and C2.

We can set up our coordinate system so that z = 0 refers to the inside surface of the steel
tank and z = 2 mm refers to the outside surface of the tank.

Then our boundary conditions are that, at z = 2mm the concentration of hydrogen is
negligible (Ca(z = 0.002) = 0). This gives C2 = 0.002.

At z = 0 mm the concentration of hydrogen in the steel is 1.5 kmol m−3 and we have

CH2 =
NH2,0

DH2

(0.002 − z)

1.5 × 103 =
NH2,0

0.3 × 10−12 0.002

NH2,0 =
(1.5 × 103)(0.3 × 10−12)

0.002
≈ 2.25 × 10−7mol m−2 s−1

c) Calculate the total mass flow rate of hydrogen transported through the side walls of the
vessel (consider just the cylindrical sides).
Solution:
The total molar loss of hydrogen from the vessel is given by the surface area of the cylinder
times by NH2,0.

NH2,0 π D L = 2.25 × 10−7 π 0.14 × 0.85 ≈ 8.4 × 10−8 mol s−1

The molar weight of hydrogen gas is 2 g mol−1. This gives us a flow rate of 1.68×10−7g s−1

or 6.048 × 10−4g hr−1.

d) It is determined that the effect of curvature must be included in the estimation of the mass
flux (we must use a cylindrical geometry). Derive the following expression for the flux

NH,r =
C1

r
and derive the following expression for the concentration profile of the hydrogen in the
steel wall.

CH2 = 5.17 × 104 ln
(

0.07
r

)
Solution:
We just repeat the analysis above but with a cylindrical geometry. The general balance
equation for a species a is

∂Ca

∂t
= −∇i Na

As we are using cylindrical coordinates and using a = H2, we can write

∂CH2

∂t
= −

(
1
r
∂

∂r
(
r NH2,r

)
+

1
r
∂ NH2,θ

∂θ
+
∂ NH2,z

∂z

)
We are at steady state, and as we assume that the system is one dimensional (symmetric in
the θ and z dimensions), we can cancel most terms to give

�
�
���

0
∂CH2

∂t
= −1

r
∂

∂r
(
r NH2,r

)
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Leaving us with the final equation

∂ r NH2,r

∂r
= 0

We can integrate this to obtain

NH2,r =
C1

r

This is a statement that for a curved surface the mass flux changes as the area changes as
a function of r .

As the hydrogen is at a low concentration we can use Fick’s law directly

NH2,r = −DH2

∂CH2

∂r
=

C1

r

Integrating once again gives

CH2 = − C1

DH2

ln (r ) + C2

We know that at the inside surface of the cylinder, the concentration of hydrogen is Ca(r =
0.068) = 1.5 kmol m−3 and at the outside surface of the cylinder the concentration is
Ca(r = 0.07) = 0.

Using the boundary condition at the outside we have

C2 =
C1

DH2

ln (0.07)

Which gives

CH2 =
C1

DH2

(ln (0.07) − ln (r ))

=
C1

DH2

ln
(

0.07
r

)
The boundary condition on the inside surface gives

1.5 × 103 =
C1

DH2

ln
(

0.07
0.068

)
C1 = 1.5 × 103 DH2

[
ln
(

0.07
0.068

)]−1

≈ 5.17 × 104 DH2

Giving the final expression

CH2 = 5.17 × 104 ln
(

0.07
r

)
The concentration profile is independent of the diffiusion coefficient! This is analogous to
the stress profile which is independent of the viscous behaviour of the fluid.
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e) Calculate the mass flux of hydrogen through the wall using the solution to the last ques-
tion.
Solution:
We need to evaluate the flux at either the inner or outer surface and multiply it by the
surface area. For consistency we will use the outer surface.

Using Fick’s law, we have

NH2,r = −DH2

∂CH2

∂r

= −5.17 × 104 DH2

∂

∂r
ln
(

0.07
r

)
=

5.17 × 104 DH2

r

The molar flux at the outer surface is

NH2,r=0.07 m =
5.17 × 104 DH2

0.07
≈ 2.22 × 10−7 mol m−2 s−1

The total mass flux is

Mass flux = mH2 NH2,r=0.07 m π D L = 2 × 2.22 × 10−7 π 0.14 × 0.85 ≈ 1.66 × 10−7g s−1

≈ 5.98 × 10−4g hr−1

where mH2 = 2 g mol−1 is the molar mass of hydrogen.

This is less than the 6.048 × 10−4g hr−1 calculated previously but not by a significant
amount.

[Question end]

Question 60Q.60
Helium gas at 100 bar and 20◦C is stored in a 140 mm outer-diameter vessel with a pyrex
wall 4 mm thick and a height of 850 mm. The molar concentration of helium in the pyrex
is 35 mol m−3 at the inner surface and negligible at the outer surface, while the diffusion
coefficient of helium in pyrex is approximately 0.2 × 10−12 m2 s−1.

a) Assuming the curvature of the tank is negligible (you can use rectangular coordinates)
and steady-state, one-dimensional conditions, show that the molar flux of helium is con-
stant through the wall. [3 marks]

NHe,z = NHe,0

Solution:
There are two ways we can derive the general balance equation for this problem:

General Balance Equation Approach
The general balance equation for a species a is

∂Ca

∂t
= −∇i Na
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As we are using rectangular coordinates and using a = He, we can write

∂CHe

∂t
= −∇x NHe,x −∇y NHe,y −∇z NHe,z

We are at steady state, and as we assume that the system is one dimensional (symmetric in
the x and y dimensions), we can cancel most terms to give

�
�
���

0
∂CHe

∂t
= −�����:0

∇x NHe,x −�����:0∇y NHe,y −∇z NHe,z

Leaving us with the final equation

∇z NHe,z =
∂NHe,z

∂z
= 0

We can integrate this to obtain

NHe,z = C

This is a statement that for a flat plate at steady state the molar flux is a constant value.
This constant value is the flux at some point in the system, so we choose z = 0 to give
C = NHe,0.

NHe,z = NHe,0

Shell Balance Approach
We perform a balance for helium on a thin slab of pyrex located within the wall of the tank.
The bottom of the slab is at z, the thickness of the slab is ∆z, and the area of the slab is A.
We assume that we are at steady state, so there is no accumulation. Therefore, we expect
that the influx of helium should equal the outflux:

NHe,z(z) A − NHe,z(z + ∆z) A = 0
NHe,z(z + ∆z) − NHe2,z(z)

∆z
= 0

Taking the limit ∆z → 0, we find

∂NHe,z

∂z
= 0

Integrating this equation, we find

NHe,z = C

From this point on the arguments are the same as for the general balance equation approach.

b) The concentration of helium in the pyrex wall is very low xHe ≪ 1, allowing the use of
the simple form of Fick’s law. Determine the concentration profile of helium in the wall.

[4 marks]
Solution:
If the concentration of helium is small, then we can use Fick’s law of diffusion directly.

NHe,z = NHe,0 = −DHe
∂CHe

∂z
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We can determine the concentration profile using a single integration

∂CHe

∂z
= −NHe,0

DHe

CHe = −NHe,0

DHe
z + C

=
NHe,0

DHe
(C − z)

Now we need to use the boundary conditions to determine the values of the constants NHe,0

and C.

We can set up our coordinate system so that z = 0 refers to the inside surface of the pyrex
tank and z = 2 mm refers to the outside surface of the tank.

Then our boundary conditions are that, at z = 4mm the concentration of helium is negligible
(Ca(z = 0.004) = 0). This gives C = 0.004.

At z = 0 mm the concentration of helium in the pyrex is 35 mol m−3 and we have

CHe =
NHe,0

DHe
(0.004 − z)

35 =
NHe,0

0.2 × 10−12 0.004

NHe,0 =
35 × 0.2 × 10−12

0.004
≈ 1.75 × 10−9mol m−2 s−1

c) Calculate the total mass flow-rate of helium transported through the side walls of the
vessel (consider just the cylindrical sides). [3 marks]
Solution:
The total molar loss of helium from the vessel is given by the surface area of the cylinder
multiplied by NHe,0.

NHe,0 π D L = 1.75 × 10−9 π 0.14 × 0.85 ≈ 6.5 × 10−10 mol s−1

The molar weight of helium gas is 4 g mol−1. This gives us a flow rate of 2.6 × 10−9g s−1

or 9.4 × 10−6g hr−1.

[Question total: 10 marks]

Question 61Q.61
To maintain a pressure close to 1 atm, an industrial pipeline containing ammonia gas is
vented to ambient air. Venting is achieved by tapping the pipe and inserting a 3 mm diameter
tube, which extends for 20 m into the atmosphere. With the entire system operating at
25 ◦C and 1 bar, the ideal gas equation of state predicts a total molar concentration of
40.9 mol m−3. Equimolar counter-diffusion can be assumed, and both the concentration of
air in the pipeline and the concentration of ammonia in the atmosphere can be considered
negligible. The diffusion coefficient of ammonia through air is approximately 2×10−5 m2 s−1.

a) Determine the mass rate of ammonia (17 g mol−1) lost in to the atmosphere, NA, in kg/h
and the mass rate of contamination of the pipe with air (29 g mol−1), NB, in the same
units. [12 marks]
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Solution:
There is no generation of mass in the flow, and the system is at steady state✓1 , thus[1/12]

�
�

���
0

∂CA

∂t
= −∇ · NA + ��*0σA

∇ · NA = 0

Using rectangular coordinates, and treating this as a one dimensional flow we find that the
fluxes of the ammonia and air are constant.✓1[1/12]

∂NA,x

∂x
= 0

Thus,

NA,z = NA,0 NB,z = NB,0

The boundary conditions are

CA(z = 0 m) = 40.9 mol/m3 CA(z = 20 m) = 0 mol/m3

CB(z = 0 m) = 0 mol/m3 CB(z = 20 m) = 40.9 mol/m3

✓
2 If the system is an ideal gas, and there is no pressure driven flow (assumed by the pipeline[2/12]
being at 1 atm), this is equimolar counterdiffusion✓

2 , thus NB,0 = −NA,0.[2/12]
For equimolar counterdiffusion we can directly use Fick’s law for the fluxes,

NA,z = NA,0 = −DAB
∂CA

∂z

Integrating this equation, we find:

CA = C − NA,0

DAB
z

✓
1[1/12]

From the first boundary condition in the ammonia (CA(z = 0 m) = 40.9 mol/m3), we find

C = 40.9 mol/m3

✓
1 From the second boundary condition we find[1/12]

0 = 40.9 − 20
NA,0

DAB

NA,0 =
40.9 DAB

20

=
40.9 × 2 × 10−5

20
≈ 4.09 × 10−5 mol/m2s

✓
1[1/12]
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If we multiply the flux of ammonia by the cross-sectional area of the tube π D2/4 and its
molecular weight (17 g/mol), we will find the mass rate of ammonia lost to the atmosphere:

ammonia lost to atmosphere = NA,0
π

4
D2 MA

=
(

4.09 × 10−5 mol
m2 s

)
π

4
(0.003 m)2(17 g/mol)

≈ 4.91 × 10−9 g/s

≈ 1.77 × 10−8 kg/h

To determine the mass rate of contamination of the pipe with air, we first note the molar flux
of air into the pipe is equal and opposite to the molar flux of ammonia into the atmosphere
(NA,0 = −NB,0 due to the assumption of equimolar counterdiffusion).✓1 Multiplying this molar[1/12]
flux by the cross-sectional area of the tube and the molecular weight of air (29 g/mol), we
find that the mass flowrate of air into the pipeline is

air entering pipeline = −NA,0
π

4
D2 MB

= −
(

4.09 × 10−5 mol
m2 s

)
π

4
(0.003 m)2(29 g/mol)

≈ −8.38 × 10−9 g/s

≈ −3.02 × 10−9 kg/hr

✓
2[2/12]

b) A new high-tech membrane, which is impermeable to air, is installed at the bottom of the
pipe to prevent air polluting the pipeline. The air within the tube is now stationary and
the mole fraction of ammonia at the surface of the membrane is xA(z = 0) = 0.9. Resolve
the problem again to determine the flux of ammonia.
Note: Stefan’s law (in mole fractions for ideal gases) is given by the following

NA,z = −DAB
CT

1 − xA

∂xA

∂z

[8 marks]

Solution:
This problem is similar to diffusion in an Arnold cell. For equimolar counter-diffusion, we
have Stefan’s law

NA,z = −DAB
CT

1 − xA

∂xA

∂z

The flux of ammonia is still constant along the pipe (the balance equation hasn’t changed,
only the expression for the flux). So we can try integrating Stefan’s law

NA,z = NA,0 = −DAB
CT

1 − xA

∂xA

∂z

NA,0

∫
dz = −DAB CT

∫
1

1 − xA
dxA

NA,0 z = DAB CT ln (1 − xA) + C
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✓
2[2/8]

The boundary condition at the bottom of the pipe, in terms of the mole fraction, is xA(z =
0) = 0.9 which gives

0 = DAB CT ln (0.1) + C
C = −DAB CT ln (0.1)

= −2 × 10−5 × 40.9 × ln (0.1) ≈ 1.88 × 10−3

✓
1[1/8]

The other boundary condition is that the concentration of ammonia is zero at the exit of
the tube xA(z = 20 m) = 0.

20 NA,0 = DAB CT ln (1) + 1.88 × 10−3

NA,0 =
1.88 × 10−3

20
= 9.4 × 10−5 mol/m2 s

✓
1 The total mass flowrate of ammonia is[1/8]

ammonia lost to atmosphere = NA,0
π

4
D2 MA

=
(

9.4 × 10−5 mol
m2 s

)
π

4
(0.003 m)2(17 g/mol)

≈ 1.13 × 10−8 g/s

≈ 4.07 × 10−8 kg/hr

✓
2 The flow rate of ammonia has increased from 1.77×10−8 kg/h (this is a feature of diffusion[2/8]
through a stationary layer), but it is still small.✓2[2/8]

[Question total: 20 marks]

Question 62Q.62
A Winkelmann apparatus is used to measure the diffusivity of a substance, A, in air. It is
sketched in Fig. 22. To perform the experiment, a quantity of liquid A is placed at the bottom
of a test tube. The liquid evaporates to a vapour mole fraction of xA,sat at the liquid surface
(which is determined in a separate equilibrium experiment). The vapourised A then diffuses
up the tube where it is removed by a steady flow of air. As A is removed, the liquid level in
the tube drops and by monitoring it’s rate of change the total diffusive flux can be calculated.
We can assume the diffusion profile is at steady state if the rate of evaporation is slow. We
also assume the vapours of air and A form an ideal gas, so density is constant inside the
tube.

a) Derive the following differential balance equation governing the diffusion of mass in the
system. Remember to state any assumptions you make.

∂

∂z
NA,z = 0

[5 marks]
Solution:
As the liquid is evaporating slowly, we can assume it is at quasi steady-state.✓1[1/5]

We also assume that the diffusion is one-dimensional and only consider diffusion up the
axis of the tube.✓1 We can use either rectangular or cylindrical coordinates, but rectangular[1/5]
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Figure 22: A winklemann experiment.

coordinates are used here as they’re simpler.

From the general balance equation, we have

∂CA

∂t
= −∇i NA,i

We choose either a rectangular or cylindrical coordinate system and align the z-axis so that
it points up the test tube.

At steady state the time derivative is zero✓1 and the flux in the directions perpendicular to[1/5]
z are zero.✓1[1/5]

�
�
���

0
∂CA

∂t
= −∇x ���*

0
NA,x −∇y �

��*
0

NA,y −∇z NA,z

Substituting in the definition of the z-component of the cylindrical/rectangular gradient
operator, we have

∇z NA,z =
∂ NA,z

∂z
= 0

✓
1[1/5]

b) Write down the boundary conditions of the system and state which class of diffusion
problem this is. [3 marks]
Solution:
The boundary conditions are:

• The mole fraction at the surface of the liquid is equal to the saturation mole fraction
(xA = xA,sat at z = 0). ✓

1[1/3]

• At the top of the test tube, the concentration is zero due to the high flow-rate of air
(xA = 0 at z = L).✓1[1/3]

This is diffusion through a stagnant layer.✓1[1/3]

c) Derive Stefan’s law, given below, from the general expression for the diffusive flux. [4 marks]

NA,z = −DA,air
C

1 − xA

∂xA

∂z
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Solution:
Taking the general expression for the diffusive flux from the datasheet, we have

NA,z = −DAB
∂CA

∂z
+ xA

∑
i

Ni ,z

There are only two components in this system, the stationary air and the diffusing compon-
ent (A). Thus, the general expression becomes

NA,z = −DA,air
∂CA

∂z
+ xA (NA,z + Nair ,z)

✓
1 The air within the test tube must be stationary (Nair ,z = 0), as it is not absorbed or released[1/4]
by the liquid.✓1[1/4]

NA,z = −DA,air
∂CA

∂z
+ xA NA,z

Noting that CA = xA C, where C is the total gas concentration in the system, we can write

NA,z = −DA,air
∂CA

∂z
+ xA NA,z

= −DA,air C
∂xA

∂z
+ xA NA,z

(1 − xA)NA,z = −DA,air C
∂xA

∂z

NA,z = −DA,air
C

1 − xA

∂xA

∂z

✓
2[2/4]

d) Derive the following expression for the mole fraction profile xA in the system. [8 marks]

xA = 1 − (1 − xA,sat )1−z/L

using the identity

∂NA,z

∂z
= 0

Solution:
Substituting Stefan’s law into the balance equation from the first question, we have

∂

∂z

(
−DA,air

C
1 − xA

∂xA

∂z

)
= 0

✓
1 Integrating this equation with respect to z, we have[1/8]

DA,air
C

1 − xA

∂xA

∂z
= C1

✓
1 Integrating again we have[1/8]
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−DA,air C ln (1 − xA) = C1 z + C2

✓
1 The first boundary condition, as z = 0 we have xA = xA,sat . Which gives[1/8]

C2 = −DA,air C ln (1 − xA,sat )

✓
1 The second boundary condition is that at z = L we have xA = 0. Using these values we[1/8]
find,

−DA,air C ������:0
ln (1 − 0) = C1 L − DA,air C ln (1 − xA,sat )

C1 =
DA,air C

L
ln (1 − xA,sat )

✓
1 Substituting these values back in, we find[1/8]

ln (1 − xA) =
(

1 − z
L

)
ln (1 − xA,sat )

ln

(
1 − xA

(1 − xA,sat )1−z/L

)
= 0

xA = 1 − (1 − xA,sat )1−z/L

✓
2[2/8]

e) The derivative of the mole fraction in position is

∂xA

∂z
=

ln (1 − xA,sat ) (1 − xA,sat )1−z/L

L

Derive the following expression for the flux of A, NA,z , at any location in the tube. [3 marks]

NA,z = −DA,air
C
L

ln (1 − xA,sat )

Solution:
Starting with Stefan’s law, we can substitute in the expression for the positional derivative
of the mole fraction:

NA,z = −DA,air
C

1 − xA

∂xA

∂z

= −DA,air
C

1 − xA

ln (1 − xA,sat ) (1 − xA,sat )1−z/L

L

✓
1 Substituting in the expression for the concentration profile, we have[1/3]

NA,z = −DA,air
C

(1 − xA,sat )1−z/L

ln (1 − xA,sat ) (1 − xA,sat )1−z/L

L

= −DA,air
C
L

ln (1 − xA,sat )

✓
1 The flux of the component is constant up the tube (as expected from IN=OUT)✓1 .[1/3]

[1/3]
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f) The mysterious ingredient 7X in a popular drinks beverage evaporates to a mole fraction
of 0.02 in air at standard temperature and pressure (20 ◦C and 1 atm). In a Winkelmann
experiment, the level is dropping at a rate of 1 mm min−1 when the diffusing height is
5 cm. Determine the diffusion coefficient of 7X through air. You may assume the vapours
of 7X and air form an ideal gas and that liquid 7X has a density of 18 kmol m−3. [5 marks]

Solution:
At standard temperature and pressure, the concentration of gas molecules in an ideal gas is
given by

C =
n
V

=
P

R T
=

101300
8.314 × 293.15

≈ 41.56 mol m−3

✓
1 If the liquid level is lowering by 1 mm min−1, then the volumetric loss of liquid 7X is[1/5]

V̇7X =
1 × 10−3

60
× Atube m3 s−1

✓
1 The molar flux is then the volumetric loss multiplied by the density and divided by the[1/5]
cross-sectional area of the tube.

N7X ,z =
1 × 10−3

60 ���Atube
18 × 103

���Atube
= 0.3 mol m−2 s−1

✓
1[1/5]

We can now work out the diffusion coefficient in air

N7X ,z = −D7X ,air
C
L

ln (1 − x7X ,sat )

D7X ,air = − N7X ,z L
C ln (1 − x7X ,sat )

= − 0.3 × 0.05
41.56 ln (1 − 0.02)

≈ 0.01787 m2 s−1

✓
2[2/5]

[Question total: 28 marks]

Question 63Q.63

a) Define the Schmidt number, what does this dimensionless number tell you about the
transport processes in a fluid? [2 marks]
Solution:
The Schmidt number is defined as

Sc =
ν

D

It is the ratio of the rates momentum and mass diffusion in the fluid, and relates to the
thickness of the momentum and mass transfer layers✓2 .[2/2]
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Figure 23: The lump of dissolving sugar.

b) A hemispherical lump of sugar, initially of radius R = 0.005 m, is dropped into a cup of tea,
quickly coming to rest on the bottom of the cup as shown in Fig. 23. The sugar lump then
slowly dissolves into the tea. The diffusion coefficient of sugar in tea is 4 × 10−10 m2 s−1.
The saturation mole fraction of sugar in tea is 0.1 and the total molar density of the system
is c = 55 × 103 mol m−3.

i) Derive the following differential balance equation for the system.

∂

∂r
r 2 Ns,r = 0

[5 marks]
Solution:
We start with the general diffusion balance equation. As the sugar lump is dissolving
slowly, we can assume it is at quasi steady-state✓1 .[1/5]

�
�
��7

0
∂cs

∂t
= −∇i Ns,i

We choose a spherical coordinate system due to the symmetry of the system✓
1 . At steady[1/5]

state the time derivative is zero and assume the system is symmetric in the angles θ
and ϕ✓

1 ,[1/5]

0 = −∇i Ns,i

= −

 1
r 2

∂

∂r
(
r 2 Ns,r

)
+

1
r sin θ �

�
���
0

∂

∂θ
(Ns,θ sin θ) +

1
r sin θ �

�
���
0

∂

∂ϕ
Ns,ϕ


✓
2 This yields the final result:[2/5]

1
r 2

∂ r 2 Ns,r

∂r
= 0

ii) Determine the boundary conditions. [2 marks]
Solution:
The boundary conditions are

• The concentration is at the precipitation concentration at the surface of the sugar
lump (cs = 0.1 at r = R)✓1 .[1/2]
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• We can assume that the concentration is zero at a large distance from the sugar
lump, cs = 0 at r → ∞✓

1 .[1/2]
iii) Assuming the tea is stagnant, derive the following expression for the variation of the

sugar mole fraction in the water.

xs = 1 − 0.90.005/r

You may need the identity:∫
(1 − x)−1 dx = − ln(1 − x) + C

[11 marks]
Solution:
For diffusion through a stationary component we need to use Stefan’s law expressed in
mole fractions

Ns,r = −Dsw
c

1 − xs

∂xs

∂r
✓
1 Substituting this into the balance equation from the previous question, we have[1/11]

∂

∂r

(
r 2 Dsw

c
1 − xs

∂xs

∂r

)
= 0

✓
1 Integrating this equation with respect to r , we have[1/11]

Dsw
c

1 − xs

∂xs

∂r
=

C1

r 2

✓
1 Integrating again we have[1/11]

−Dsw c ln (1 − xs) = −C1

r
+ C2

✓
2 The first boundary condition, as r → ∞ we have xs → 0. Which gives C2 = 0✓

1 .[2/11]
[1/11] The second boundary condition, at r = R = 0.005 we have xs = xs,sat = 0.1✓

1 . Rearran-

[1/11] ging the equation we have

C1 = R Dsw c ln (1 − xs,sat )
✓
1 Substituting in the values, we have[1/11]

C1 = 0.005 × 4 × 10−10 × 55 × 103 ln (1 − 0.1)

≈ −1.16 × 10−8

✓
1 The final solution is given by[1/11]

Dsw c ln (1 − xs) =
R Dsw c ln (1 − xs,sat )

r

ln (1 − xs) =
R
r

ln (1 − xs,sat )

xs = 1 − (1 − xs,sat )R/r

xs = 1 − 0.90.005/r

✓
2[2/11]

[Question total: 20 marks]
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Question 64Q.64
Consider a spherical coal particle undergoing combustion. Combustion of solids is typically
limited by the rate at which oxygen can get to the combusting surface. As the reaction is
oxygen limited, we assume that as soon as oxygen reaches the coal surface it is instantly
converted to carbon monoxide (CO).

2 C + O2 → 2 CO

You can assume that there is no oxygen at the surface of the coal particle xO2(r = R) = 0,
and a oxygen mole fraction of 21% at a large distance from the particle xO2(r → ∞) = 0.21.
You can also assume steady state conditions, a constant temperature and pressure, and
that all gases are ideal gases and mixtures.

a) Specify and simplify the balance equation for the oxygen in this system.
Solution:
The general balance equation, for ANY diffusion problem is

∂CA

∂t
= −∇ · NA + σA

This could be the balance for any of the diffusing species (A = [O2, CO, N2]), but we’ll only
need to look at the balance for the oxygen.

∂CO2

∂t
= −∇ · NO2 + σO2

We can assume the system is at steady state. We can also state there is no production
or consumption of oxygen in the air, only at the boundary of the particle. So the genera-
tion/consumption of oxygen (σO2) is also zero

�
�
���

0
∂CO2

∂t
= −∇ · NO2 + �

��*
0

σO2

∇ · NO2 = 0

We use spherical coordinates as we have a spherical particle. Using spherical coordinates
and expanding the dot product above we have

1
r 2

∂

∂r
(
r 2 NO2,r

)
+

1
r sin θ

∂

∂θ

(
NO2,θ sin θ

)
+

1
r sin θ

∂ NO2,ϕ

∂ϕ
= 0

The particle is symmetric in the θ and ϕ directions, so we can cancel these gradients to give.

1
r 2

∂

∂r
(
r 2 NO2,r

)
= 0

This is the final, simplest balance equation for this system. The steps we went through
above are very similar to the steps used to simplify the continuity equation. And, just like
in the continuity equation, we almost always make assumptions to reduce it to a single
gradient term, as above.
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b) Derive the following expression for the oxygen flux.

NO2,r = − D CT

1 + xO2

∂xO2

∂r

Solution:
Every flux in every diffusion problem is given by the general equation

NA = JA + xA

∑
B

NB

where JA is given by Fick’s law of diffusion

JA,x = −D
∂CA

∂x

So, considering only oxygen and the flux in the r direction, we have

NO2,r = JO2,r + xO2

∑
B

NB,r

= −D
∂CO2

∂r
+ xO2

∑
B

NB,r

There are three species in the system, O2, CO, N2. So the sum on the right can be expanded
like so

NO2,r = −D
∂CO2

∂r
+ xO2

∑
B

NB,r

= −D
∂CO2

∂r
+ xO2

(
NO2,r + NCO,r + NN2,r

)
In this problem, for every mole of oxygen that reaches the surface, two moles of carbon
monoxide are formed.

2 C + O2 → 2 CO

This means that the flux of carbon monoxide must have the opposite sign to the flux of
oxygen, and must be twice as large

NCO,r = −2 NO2,r

The nitrogen is not going anywhere so we have

NN2,r = 0

Substituting this in to the expression for NO2,r , we have

NO2,r = −D
∂CO2

∂r
+ xO2

(
NO2,r + �

���*
−2 NO2,r

NCO,r + �
���*0

NN2,r

)

= −D
∂CO2

∂r
+ xO2

(
NO2,r − 2 NO2,r

)
NO2,r = −D

∂CO2

∂r
− xO2 NO2,r
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We can rearrange for NO2,r to give

NO2,r = − D
1 + xO2

∂CO2

∂r

The molar concentration is related to the mole fraction by CA = xA CT , where CT is the
total molar concentration. We assume that the total molar concentration is constant as the
temperature and pressure are constant. We can rewrite the equation purely in terms of the
mole fraction of oxygen, xO2

NO2,r = − D
1 + xO2

∂CO2

∂r

= − D
1 + xO2

∂xO2 CT

∂r

= − D CT

1 + xO2

∂xO2

∂r

This is the final expression. Note that the diffusion is lower by a factor (1 + xO2)
−1 than just

plain Fick’s law would give you. This is because the diffusion of carbon monoxide from the
surface will hinder the diffusion of oxygen to the surface.

c) Using the expression for the oxygen flux and the balance for the oxygen flux, solve for
the concentration profile of oxygen around the particle.
Solution:
Here we have two equations for our system.

1
r 2

∂

∂r
(
r 2 NO2,r

)
= 0 NO2,r = − D CT

1 + xO2

∂xO2

∂r

We need to solve for the concentration profile, which we can express in terms of xO2 . Just
like all of the flow examples, we integrate the balance equation first to find the flux around
the particle

1
r 2

∂ r 2 NO2,r

∂r
= 0

∂ r 2 NO2,r

∂r
= 0

r 2 NO2,r = C1

NO2,r =
C1

r 2

Note that the total flux of oxygen into the particle is equal to the flux times by the surface
area of a sphere at a radius r , so

Total diffusion rate of oxygen onto the particle = 4π r 2 NO2,r = 4π C1

This gives a physical meaning to the constant C1.

Taking the two expressions for the flux, we have

NO2,r =
C1

r 2 = − D CT

1 + xO2

∂xO2

∂r
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Rearrange both sides ready to integrate and performing the integration we have

C1

∫
1
r 2 dr = −D CT

∫
1

1 + xO2

dxO2

−C1
1
r

= −D CT ln
(
1 + xO2

)
+ C2

Now we need to determine the integration constants using the boundary conditions. As
r → ∞ we find xO2 → 0.21, which gives

−C1
�
�
���
0

1
∞

= −D CT ln (1 + 0.21) + C2

C2 = D CT ln (1.21)

substituting this back in to the previous expression we have

−C1
1
r

= D CT
(
ln (1.21) − ln

(
1 + xO2

))
The other boundary condition is at r = R, we have xO2 = 0 which gives

−C1
1
R

= D CT

(
ln (1.21) −������:0

ln (1 + 0)
)

C1 = −R D CT ln (1.21)

Substituting this back in, we have

D CT ln (1.21)
R
r

= D CT
(
ln (1.21) − ln

(
1 + xO2

))
ln (1.21)

R
r

= ln
(

1.21
1 + xO2

)
We want an expression for the concentration profile, so lets rearrange for xO2 .

ln (1.21)
R
r

= ln
(

1.21
1 + xO2

)
ln
(
1.21R/r) = ln

(
1.21

1 + xO2

)
1.21R/r =

1.21
1 + xO2

xO2 =
1.21

1.21R/r − 1

xO2 = 1.211−R/r − 1

d) What can you use the information you’ve derived for?
Solution:
By knowing the rate at which oxygen gets to the particle you can calculate how fast it is

burning, from this you can work out.

i) The rate at which you need to add air to the fire.
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ii) How much heat is released per second.
iii) How long the coal particle will take to burn.

All of this information is essential if you want to design a coal (or any other solid fuel, e.g.,
biomass) fired power plant.

Solution:
Extra Notes:

The total concentration of air was calculated using the ideal gas equation of state. If we assume
the particle is burning in air at STP, we have

n
V

=
P

R T
=

105

8.314 × 293.15
≈ 41 mol m−3

[Question end]

Question 65Q.65
Consider a spherical aggregate (or ball) of bacterial cells (assumed to be homogenous) of
radius R. Under certain circumstances, the oxygen metabolism rate of the bacterial cells
is an almost constant reaction (zero-order) with respect to the oxygen concentration σO2 =
−kO2. The diffusion of oxygen within the ball may be described by Fick’s law with an effective
pseudobinary diffusivity for oxygen in the bacterial medium of DO2−M . Neglect transient and
convection effects because the oxygen solubility is very low in the system. Let C(R)

O2
be the

oxygen mass concentration at the aggregate surface:

a) Show all of your working and state all assumptions made while demonstrating that the
oxygen balance for the system,

∂ CO2

∂t
= −∇ · NO2 + σO2,

simplifies to the following expression,

∂

∂r
(
r 2 NO2, r

)
= −kO2 r 2.

[4 marks]
Solution:
Take the balance for O2

∂ CO2

∂t
= −∇ · NO2 + σO2

✓
1 Neglecting transient effects (assuming steady state), and inserting the spherical definition[1/4]
of ∇ · NO2 gives

∇ · NO2 = σO2

1
r 2

∂

∂r
(
r 2 NO2,r

)
+

1
r sin θ

∂

∂θ

(
NO2,θ sin θ

)
+

1
r sin θ

∂ NO2,ϕ

∂ϕ
= σO2

✓
2 Assuming the system is rotationally symmetric, we have ∂

∂ϕ
= 0 and ∂

∂θ
= 0, all terms[2/4]

except the first are zero. Inserting this back in along with the definition of σO2 gives:

∂

∂r
(
r 2 NO2, r

)
= −kO2 r 2

✓
1[1/4]
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b) Demonstrate that the oxygen flux obeys the following relationship:

NO2, r = −kO2 R2
(

r
3 R2 +

C1 R
6 r 2

)
where C1 is an unknown constant. [4 marks]
Solution:
Integrating the previous eqation

∂

∂r
(
r 2 NO2, r

)
= −kO2 r 2

r 2 NO2, r = −kO2

r 3

3
+ C ′

1

NO2, r = −kO2

r
3

+
C ′

1

r 2

✓
1 To match the solution, some rearrangement is needed.[1/4]

NO2, r = −kO2 R2
(

r
3 R2 − C ′

1

r 2 R2 kO2

)
✓
1 The final step is to redefine the integration constant C ′

1 in terms of another unknown[1/4]
constant C1, like so C ′

1 = −kO2 C1 R3/6✓
1 , giving the final solution[1/4]

NO2, r = −kO2 R2
(

r
3 R2 +

C1 R
6 r 2

)
.

✓
1[1/4]

c) Demonstrate that the concentration profile obeys the following form in the limit that the
O2 concentration is small:

CO2 =
kO2 R2

6 DO2−M

(
r 2

R2 − C1
R
r

)
+ C2

[4 marks]
Solution:
From the datasheet, we have the definition of the diffusive flux:

NO2 = JO2 + ���*0xO2

∑
B

NB

where the last term cancels due to the low concentration assumption.✓1 Inserting Fick’s law[1/4]
from the datasheet (which assumes a ideal mixture):

NO2 = JO2 = −DO2−M ∇CO2

In particular, for the r -direction, NO2, r is:

NO2, r = −DO2−M
∂CO2

∂r
✓
1 Inserting this into the balance from the previous equation we have:[1/4]

DO2−M
∂CO2

∂r
= kO2 R2

(
r

3 R2 +
C1 R
6 r 2

)
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✓
1 Performing the integral[1/4]

∂CO2

∂r
=

kO2 R2

DO2−M

(
r

3 R2 +
C1 R
6 r 2

)
CO2 =

kO2 R2

DO2−M

(
r 2

6 R2 − C1 R
6 r

)
+ C2

CO2 =
kO2 R2

6 DO2−M

(
r 2

R2 − C1
R
r

)
+ C2

✓
1[1/4]

d) Using the only available boundary condition, determine C2 and demonstrate that the final
expression for the concentration is:

CO2 =
kO2 R2

6 DO2−M

(
r 2

R2 + C1

(
1 − R

r

)
− 1
)

+ C(R)
O2

[4 marks]
Solution:
For r = R we have CO2 = C(R)

O2
.✓1[1/4]

C(R)
O2

=
kO2 R2

6 DO2−M
(1 − C1) + C2

C2 =
kO2 R2

6 DO2−M
(C1 − 1) + C(R)

O2

✓
2 which gives[2/4]

CO2 =
kO2 R2

6 DO2−M

(
r 2

R2 + C1

(
1 − R

r

)
− 1
)

+ C(R)
O2

✓
1[1/4]

e) It is possible that the spherical bacterial ball has an oxygen-free core (CO2 = 0 for r ≤
rcore). Prove that this only happens for:

kO2 R2

DO2−M C(R)
O2

≥ 6

Hints: As the concentration and diffusive flux are continuous, they both must go to zero
at the core radius rcore. Use this to solve for C1, then solve for rcore and consider what is
required if rcore ≥ 0. [4 marks]
Solution:
We have two equations:

NO2, r = −kO2 R2
(

r
3 R2 +

C1 R
6 r 2

)
CO2 =

kO2 R2

6 DO2−M

(
r 2

R2 + C1

(
1 − R

r

)
− 1
)

+ C(R)
O2

✓
1 At the core radius, we have from the flux equation:[1/4]

6th December 2023 Page 120 of 157



Heat, Mass, and Momentum Transfer M. Bannerman

����*0
NO2, r = −kO2 R2

(
rcore

3 R2 +
C1 R
6 r 2

core

)
C1 = −2 r 3

core

R3

From the concentration equation we have

�
��>

0
CO2 =

kO2 R2

6 DO2−M

(
r 2
core

R2 + C1

(
1 − R

rcore

)
− 1
)

+ C(R)
O2

1 −
6 DO2−M C(R)

O2

kO2 R2 =
r 2
core

R2 + C1

(
1 − R

rcore

)
✓
1 Inserting the definition of C1, we have[1/4]

1 −
6 DO2−M C(R)

O2

kO2 R2 = 3
r 2
core

R2 − 2 r 3
core

R3

=
r 2
core

R2

(
3 − 2

rcore

R

)
✓
1 If 0 < rcore/R ≤ 1 (which it must be if it exists) then the right hand side of the equation[1/4]
must be positive. For the left hand side to be equally positive, we must have:

kO2 R2

DO2−M C(R)
O2

≥ 6

✓
1[1/4]

[Question total: 20 marks]

Question 66Q.66
Consider condensing heat transfer:

a) The film thickness is a critical design parameter of condensing heat transfer. Explain how
the thickness of the liquid layer affects the heat transfer and what the optimal conditions
are for maximising the condensing rate.
Solution:
In condensation, the surface of the liquid film must be at the dew-point of the liquid. In
order to transfer heat through this layer of liquid the rest of the film must be subcooled below
this temperature. Therefore the thicker the film, the more energy is required to subcool the
liquid before further condensation can take place. A thin liquid film is most desirable for
pure condensation.

b) Discuss dropwise and film condensation. Which is most likely and why is dropwise con-
densation more favourable?
Solution:
Dropwise condensation happens only on specially treated and maintained surfaces; how-
ever, as sections of the surface are almost bare of any liquid the condensation heat transfer
coefficients are extremely high.

The disadvantages of dropwise condensation are that avalanches of droplets cause intermit-
tent surges of condensate which may flood any process equipment after the condenser. Also,
when the surface dirties condensation switches back to film-limited transfer.

[Question end]
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Question 67Q.67

a) i) Sketch the pool boiling curve (heat-flux/transfer-coefficient versus excess temperat-
ure), identify the key boiling regimes and describe the conditions in each. [8 marks]
Solution:

The markings on the graph denote the three main regions:
I Pure convective boiling: The heat transfer is driven by natural convection with

evaporation taking place at the surface of the fluid.
II Nucleate boiling: Bubbles begin to form at the hot surface, increasing the heat

transfer rate significantly due to increased convection at the surface.
III Film boiling: The high rate of vapour generation causes the bubbles to coalesce and

form a vapour film covering the boiling surface.The heat transfer rate continues to
increase as radiative heat transfer comes into play .

ii) On your pool boiling curve, indicate the location of the critical heat flux and describe
advantages and the danger of operating an electrical boiler at this point. [2 marks]
Solution:
The critical heat flux occurs at the maximum in the heat flux just before the onset of
film heat transfer. Operation at this location is advantageous as the heat transfer is at
its peak;However, if a fluctuation causes the boiler to move into the film boiling, the
heat transfer rate drops causing the temperature to rise further and it may cause the
boiler to burn out.

iii) Why are electrical boilers vunerable to burnout near the critical heat flux when com-
pared to boilers which use condensing steam as a heat source? [2 marks]
Solution:
With electrical heaters the heat flux, Q, is directly controlled, therefore the temperature
of the wall may runaway if the actual heat flux is lower; however, steam is supplied to
a heat exchanger at a fixed temperature which the boiler cannot exceed.

b) A kettle-type re-boiler operating at a pressure of 0.3 bar is used to boil a fluid of orthodi-
chlorobenzene at a temperature of 120 ◦C. The properties of the mixture are given in the
table below.

µL 0.45 × 10−3 Pa s µG 0.01 × 10−3 Pa s
ρL 1170 kg m−3 ρG 1.31 kg m−3

kL 0.11 W m−1 K−1 Cp,L 1.25 kJ kg−1 K−1

pc 41 bar Boiling point 136 ◦C
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i) Assuming 40 m2 of surface area is available for boiling and neglecting the geometry,
calculate the heat transferred due to pure nucleate boiling. [6 marks]
Solution:
There are two correlations for the heat transfer coefficient, in the data sheet. However,
only the Mostinski correlation is useful as we do not have data on the surface tension,
γ.

hnb = 0.104 p0.69
c q0.7

[
1.8
(

p
pc

)0.17

+ 4
(

p
pc

)1.2

+ 10
(

p
pc

)10
]

= 0.104 × 410.69 q0.7

[
1.8
(

0.3
41

)0.17

+ 4
(

0.3
41

)1.2

+ 10
(

0.3
41

)10
]

≈ 1.07 q0.7

If the heat flux is due to pure nucleate boiling then we have

q = hnb (Tw − Tfluid )

The wall temperature will be at the boiling temperature of the fluid Tw = 136 ◦C.
Inserting this expression into the expression for the boiling heat transfer coefficient
yields

hnb = 1.07 × (hnb [136 − 120])0.7

Rearranging for hnb, we have

h0.3
nb = 1.07 × ([136 − 120])0.7

h0.3
nb = 7.45

hnb = 808 W m−2 K−1

Finally, the total heat transfer rate is given by

Q = q A = hnb A (Tw − Tfluid )
= 808 × 40 (136 − 120)
≈ 517 kW

ii) Estimate the critical heat flux and determine if the reboiler is operating in a safe
region. [4 marks]
Solution:
Again we use a Mostinski correlation for the critical heat flux

qc = 3.67 × 104 pc

(
p
pc

)0.35 [
1 − p

pc

]0.9

= 3.67 × 104 × 41
(

0.3
41

)0.35 [
1 − 0.3

41

]0.9

≈ 267 kW m−2

The total critical heat transfer rate is

Qc = qc A = 267000 × 40
≈ 10.7 MW

This critical heat flux is well above the operating heat transfer rate, so the reboiler is
operating in a safe region.

[Question total: 22 marks]
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Question 68Q.68
Two immiscible incompressible Newtonian fluids flow co-currently in a horizontal plane chan-
nel, as shown in Fig. 24. The density and viscosity of fluid 1 are ρ1 and µ1, respectively; the
density and viscosity of fluid 2 are ρ2 and µ2. This is the simplest example of multiphase
flow, and is one of the few systems with an analytical solution. Each phase must be solved
separately (two Continuity/Cauchy equations) as they only interact with each other through
their boundary conditions. Assuming the two fluids are liquids (not liquid gas), we can apply
a no-slip condition between the two phases at y = h (the velocities of the two phases are
equal). We also know that the stresses are equal at the interface from Newton’s third law of
motion.

Figure 24: Flow of two immiscible fluids in a planar channel.

a) Derive the following expressions for the velocity distributions in each fluid.

vx ,1(y ) = −∆pH2

2µ1L

(
1 − y

H

) [
1 + A1 +

y
H

]
(43)

vx ,2(y ) =
∆pH2

2µ2L

( y
H

)( y
H

+ A1

)
(44)

where

A1 = −
[
1 +

(
µ1

µ2
− 1
)

h2

H2

] [
1 +

(
µ1

µ2
− 1
)

h
H

]−1

(45)

Clearly state what assumptions you make along the way.
Solution:
Standard method to derive the stress equation:
We can start this problem by taking the continuity equation in rectangular coordinates. As
with all of the other examples, if we assume well-developed, laminar, and incompressible
flow, it simplifies to:

∂vx

∂x
= 0

Note that we don’t need to assume steady-state for this!

Noting that the flow is horizontal, and now assuming steady-state flow, the momentum
balance equation also simplifies (exactly as before) to

ρ vj ∇j vi = −∇j τji −∇i p
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Setting i = x we have

ρ vj ∇j vx = −∇j τjx −∇x p

We can eliminate all the vj terms where j = [y , z] as the velocity is zero in those directions
(well-developed laminar-flow approximations) to give

ρ vx ∇x vx = −∇j τjx −∇x p

Again, from the continuity equation ∇x vx = 0 so we have

∇j τjx = −∇x p

We only have stress in the x-y direction, so we end up with

∇y τyx = −∇x p

Alternative “balance” method to derive the stress equation
Alternatively, we could start this problem by performing a force balance on a thin slab of
fluid within the system. This is a much more common method of derivation in “Transport
Phenomenon”; however, it requires some intuition.

The bottom of the slab is located at y , and thickness of the slab is ∆y . The system is
at steady state, so the various forces that act on the slab will sum to zero. There are two
types of forces relevant in the problem: (i) pressure forces and (ii) viscous forces. The force
balance is then:

0 = p(x = 0)W∆y − p(x = L)W∆y + τyx (y + ∆y )WL − τyx (y )WL

0 =
p(x = 0) − p(x = L)

L
+
τyx (y + ∆y ) − τyx (y )

∆y
τyx (y + ∆y ) − τyx (y )

∆y
= −∆p

L
(46)

where ∆p = p(x = 0) − p(x = L). Taking the limit ∆y → 0, we find

∂τyx

∂y
= −∆p

L
(47)

Back to solving the stress equation
Carrying on, regardless of which fluid we consider, to determine the velocity distribution we
substitute Newton’s law of viscosity

τyx = −µ
∂vx

∂y

into the stress balance equation (Eq. (47)), which yields

∂

∂y
µ
∂vx

∂y
=

∆p
L

∂2vx

∂y2 =
∆p
µL

(48)
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This equation can be integrated twice with respect to y to yield the general velocity profile
equation, valid for either fluid:

vx (y ) =
∆p

2µL
y2 + A′ y + B′ (49)

vx (y ) =
∆p H2

2µL

(
y2

H2 +
A y
H

+ B
)

(50)

where A and B are integration constants and were redefined in the second line to make them
into dimensionless terms (not needed, just makes what follows much simpler).

In this problem, there are two fluids. In this situation, we need two velocity profile equations,
one for each fluid:

vx ,1(y ) =
∆p H2

2µ1 L

(
y2

H2 + A1
y
H

+ B1

)
(51)

vx ,2(y ) =
∆p H2

2µ2 L

(
y2

H2 + A2
y
H

+ B2

)
(52)

We now have four unknown integration constants. In order to specify these, we need four
boundary conditions. These are: (i) vx ,1 = 0 at y = H, (ii) vx ,2 = 0 at y = 0, (iii) vx ,1 = vx ,2

at y = h, and (iv) τyx ,1 = τyx ,2 at y = h. Boundary conditions (i)–(iii) arise from the no-slip
wall and liquid-liquid boundaries of the system. The (iv) boundary condition is Newton’s
third law (each action has an equal and opposite reaction, so each fluid exerts an equal
stress on the other). This boundary condition can also be seen from the observation that
the stress profile (Eq. (47)) is independent of the viscous properties of the flow (so the
change in viscosity between the fluids has no effect on the stress).

Boundary condition (i) yields:

0 =
∆p H2

2µ1 L
(1 + A1 + B1)

B1 = −1 − A1 (53)

Substituting this back into the velocity profile for fluid 1, we find

vx ,1(y ) =
∆p H2

2µ1 L

(
y2

H2 + A1
y
H

− 1 − A1

)
= −∆p H2

2µ1 L

[
1 − y2

H2 + A1

(
1 − y

H

)]
(54)

We can obtain the associated expression for the stress in fluid 1 by throwing the last equation
back in to the expression for the stress:

τyx ,1(y ) = −µ1
∂vx ,1

∂y

= −∆p H
2 L

(
2 y
H

+ A1

)
(55)

We’ll come back to this equation later.

Substituting boundary condition (ii) into the expression for the velocity profile of fluid 2,
we find B2 = 0. Therefore, we have

vx ,2(y ) =
∆pH2

2µ2L

(
y2

H2 + A2
y
H

)
(56)
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The associated expression for the stress is given by

τyx ,2(y ) = −µ2
∂vx ,2

∂y

= −∆pH
2L

(
2y
H

+ A2

)
(57)

Setting y = h, using boundary condition (iv), and combining the two expressions for the
stress, we have

τyx ,1(y = h) = τyx ,2(y = h)

−∆pH
2L

(
2h
H

+ A1

)
= −∆pH

2L

(
2h
H

+ A2

)
A1 = A2 (58)

From boundary condition (iii), we find

vx ,1(h) = vx ,2(h)

−∆pH2

2µ1L

[
1 − h2

H2 + A1

(
1 − h

H

)]
=

∆pH2

2µ2L

(
h2

H2 + A2
h
H

)
1 − h2

H2 + A1

(
1 − h

H

)
= −µ1

µ2

(
h2

H2 + A1
h
H

)
A1 = −

[
1 +

(
µ1

µ2
− 1
)

h2

H2

] [
1 +

(
µ1

µ2
− 1
)

h
H

]−1

(59)

So finally, we find

vx ,1(y ) = −∆pH2

2µ1L

(
1 − y

H

) [
1 + A1 +

y
H

]
vx ,2(y ) =

∆pH2

2µ2L

( y
H

)( y
H

+ A1

)
(60)

where A1 is given in Eq. (59).

b) Derive the volumetric flow rate of each phase and give the ratio of the two flow rates. The
answer is:

V̇1

V̇2
= −3µ2

µ1

H3

h3

[
(1 + A1)

(
1 − h

H

)
− A1

2

(
1 − h2

H2

)
− 1

3

(
1 − h3

H3

)]
×
[
1 + A1

3
2

H
h

]−1 (61)

Solution:
The volumetric flowrate of fluid 1 (V̇1), per unit width, is given by

V̇1 =
∫ H

h
vx ,1(y ) dy

= −
∫ H

h

∆pH2

2µ1L

(
1 − y

H

) [
1 + A1 +

y
H

]
dy

= −∆pH3

2µ1L

∫ 1

h/H
(1 − η)(1 + A1 + η)dη

= −∆pH3

2µ1L

[
(1 + A1)

(
1 − h

H

)
− A1

2

(
1 − h2

H2

)
− 1

3

(
1 − h3

H3

)]
(62)
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The volumetric flowrate of fluid 2, per unit width, (V̇2) is given by

V̇2 =
∫ h

0
vx ,2(y )dy

=
∫ h

0

∆pH2

2µ2L

( y
H

)( y
H

+ A1

)
dy

=
∆pH3

2µ2L

∫ h/H

0
η(η + A1)dη

=
∆pH3

2µ2L

[
η3

3
+ A1

η2

2

]h/H

0

=
∆pH3

2µ2L

[
1
3

h3

H3 +
A1

2
h2

H2

]
=

∆ph3

6µ2L

[
1 + A1

3
2

H
h

]
(63)

The ratio of the volumetric flowrates is then

V̇1

V̇2
= −3µ2

µ1

H3

h3

[
(1 + A1)

(
1 − h

H

)
− A1

2

(
1 − h2

H2

)
− 1

3

(
1 − h3

H3

)]
×
[
1 + A1

3
2

H
h

]−1 (64)

c) Compare the expression above for the ratio of the volumetric flows, to the ratio of the
channel occupied by the flow ((H − h)/h). Why do these differ? What does this imply for
gas-liquid systems?
Solution:
The volumetric flow-rates differ significantly from the occupation of the channel and depends
on the gas viscosity. This is because the flow profiles can be quite assymmetric in the two
channels.

This also implies that, for gas-liquid systems, the gas volumetric flow-rates can be signific-
antly higher than the liquids, even for mainly liquid-filled channels. Obviously, two-phase
flow is difficult to work with.

[Question end]

Question 69Q.69
Exam question (2011 and 2014)
The Lockhart-Martinelli parameter, X , is a critical parameter in two-phase flow pressure-drop
and liquid hold-up calculations. It is defined as the ratio of the frictional pressure drops of
each phase, calculated as if each was flowing alone in the pipe.

X 2 =
(∂p/∂z)liq.−only

(∂p/∂z)gas−only

a) Assuming that the pipe is smooth and that both phases are fully turbulent, derive the
following expression for the Martinelli parameter

Xtt =
(

1 − x
x

)0.875(
µliq.

µgas

)0.125(ρgas

ρliq.

)0.5
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Extra hint: You may need the Darcy-Weissbach equation and a suitable expression for
the friction factor (see the datasheet). [4 marks]
Solution:
For a single-phase turbulent Newtoninan fluid flowing in a smooth pipe, we can use the
Blasisus correlation for the Fanning friction factor in the Darcy-Weisbach equation to yield

∆p
L

= −0.079 Re−1/4 ρ ⟨v⟩2

R

We define the mass flux as G = ρ ⟨v⟩ to yield

∆p
L

= −0.079 Re−1/4 G2

ρR

The Reynolds number is given by

Re =
G D
µ

Substituting it in to the previous expression, we obtain

∆p
L

= −0.079µ1/4 G1.75

ρR D1/4

The proportion of the mass flux in the pipe which is in the gas phase is defined through the
quality, x , and we have

Gg = x G Gl = (1 − x) G

We can write the pressure drop in each phase using these mass flow rates and we have

∆pl

L
= −

0.079µ
1/4
l (1 − x)1.75 G1.75

ρl R D1/4

∆pg

L
= −

0.079µ
1/4
g x1.75 G1.75

ρg R D1/4

Dividing the two equations we have

X 2
tt =

∆pl/L
∆pg/L

=
(
µl

µg

)1/4(1 − x
x

)1.75 ρg

ρl

Taking the square root, yields the final expression

Xtt =
(
µl

µg

)1/8(1 − x
x

)0.875(ρg

ρl

)1/2

b) A mixture of saturated steam at 0.09 kg s−1 and water at 1.6 kg s−1 is flowing along
a horizontal pipe with an internal diameter of 75 mm. The steam has a viscosity of
µg = 0.0113 × 10−3 N s m−2 and density of 0.788 kg m−3. The water has a viscosity of
0.52 × 10−3 N s m−2 and a density of 1000 kg m−3.
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i) Determine the flow pattern inside the pipe. [3 marks]
Solution:
We need the superficial velocity in each phase.

ul =
Ml

A ρl
=

1.6
π 0.03752 1000

≈ 0.3622 m s−1

ug =
Mg

A ρg
=

0.09
π 0.03752 0.788

≈ 25.85 m s−1

Examining the Chhabra and Richardson flow pattern map it is clearly predicted that
the flow is in the Annular flow regime.

ii) Determine the flow regime inside each phase of the pipe. [4 marks]
Solution:
For two phase flows, the Reynolds numbers are calculated using the superficial velocity
in place of the average velocity.

Rel =
ρl ul D
µl

=
1000 × 0.3622 × 0.075

0.52 × 10−3 ≈ 52240

Reg =
ρg ug D

µg
=

0.788 × 25.85 × 0.075
0.0113 × 10−3 ≈ 135198

Both phases of the flow are in the turbulent regime (Re ≫ 2300)!

iii) Calculate the two phase pressure drop multiplier (for either phase). [6 marks]
Solution:
We need to calculate the Martinelli parameter Xtt for the flow using the expression given
above:

Xtt =
(

1 − x
x

)0.875(
µliq.

µgas

)0.125(ρgas

ρliq.

)0.5

The quality, x , is given by the ratio of the gas mass flow-rate to the total mass flow-rate.

x =
Ṁg

Ṁg + Ṁl
=

0.09
0.09 + 1.6

≈ 0.0533

We can now calculate the Martinelli parameter

Xtt =
(

1 − x
x

)0.875(
µliq.

µgas

)0.125(ρgas

ρliq.

)0.5

=
(

1 − 0.0533
0.0533

)0.875( 0.52
0.0113

)0.125(0.788
1000

)0.5

≈ 0.562

Some students choose to ignore the formula for Xtt but work out the pressure drop in
each phase

∆pl

L
= −0.079 ρL u2

L

Re1/4
L R

∆pg

L
= −

0.079 ρG u2
G

Re1/4
G R

= −0.079 × 1000 × 0.36222

522401/4 × 0.0375
= −0.079 × 0.788 × 25.852

1351981/4 × 0.0375
≈ −18.28 Pa m−1 ≈ −57.85 Pa m−1
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Then X 2 can be obtained directly

X 2
tt =

∆pl/L
∆pg/L

≈ −18.28
−57.85

≈ 0.316

Xtt ≈
√

0.316 ≈ 0.562

Now we need to determine what expression to use for the two phase multiplier Φ2
liq., or

Φ2
gas. Using Chisholm’s relation, provided in the data sheet, we have for turbulent flows

Φ2
liq. = 1 +

20
X

+
1

X 2 Φ2
gas = 1 + 20 X + X 2

The two phase multiplier is then

Φ2
liq. = 1 +

20
0.562

+
1

0.5622 Φ2
gas = 1 + 20 × 0.562 + 0.5622

Φliq. ≈
√

39.75 ≈ 6.3 Φgas ≈
√

12.56 ≈ 3.54

iv) Calculate the pressure drop over a 12 m long smooth pipe. [3 marks]
Solution:
To use the two-phase multiplier we need an expression for the single-phase pressure drop
for the liquid. We can use the Darcy-Weisbach equation provided we use the Blasius
correlation for the friction factor in smooth pipes.

Cf = 0.079 Re−1/4
l = 0.079 × 52240−1/4 ≈ 0.00522

The single-phase pressure drop is given by

∆plo = −Cf L ρl u2
l

R

= −0.00522 × 12 × 1000 × 0.36222

0.0375
≈ −219 Pa

The multiphase pressure drop is given by

∆p = ∆plo Φ
2
liq. = −219 × 39.75 ≈ −8.5 kPa

[Question total: 20 marks]

Question 70Q.70
A mixture of 0.15 kg s−1 saturated steam and 1.6 kg s−1 water is flowing along a horizontal
pipe with an inner diameter of 88.9 mm. At the conditions in the pipe, the steam has a
viscosity of µg = 0.0108 × 10−3 N s m−2 and density of 0.774 kg m−3. The water has a
viscosity of 0.51 × 10−3 N s m−2 and a density of 998 kg m−3.

a) Determine the flow pattern inside the pipe. How does this horizontal flow pattern differ
from the equivalent vertical flow pattern? [5 marks]
Solution:
We need the superficial velocity in each phase.

ul =
Ml

A ρl
=

1.6
π 0.044452 998

≈ 0.258 m s−1

ug =
Mg

A ρg
=

0.15
π 0.044452 0.774

≈ 31.22 m s−1
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Looking at the flow pattern map, the flow appears to lie in the annular regime.

Horizontal annular flow differs from vertical annular flow in that the lower film is thicker
than the upper film due to the action of gravity.

b) Determine the flow regime for both phases of the flow. [3 marks]
Solution:
For two phase flows, the Reynolds numbers are calculated using the superficial velocity in
place of the average velocity.

Rel =
ρl ul D
µl

=
998 × 0.258 × 0.0889

0.51 × 10−3 ≈ 44 900

Reg =
ρg ug D

µg
=

0.774 × 31.22 × 0.0889
0.0108 × 10−3 ≈ 199 000

Both phases of the flow are well into the turbulent regime (Re ≫ 2300).

c) Calculate the two-phase pressure drop multiplier (for either phase). [5 marks]
Solution:
We need to calculate the Martinelli parameter Xtt for the flow.

X 2 =
∆pliq.−only

∆pgas−only

The single phase pressure drops are given using the Darcy-weisbach equation for each phase
as if it were flowing alone in the pipe. First, as both phases are turbulent, we calculate the
friction factor using the Blasius correlation:

Cf ,l = 0.079 Re−1/4
l = 0.00543

Cf ,g = 0.079 Re−1/4
g = 0.00374

Inserting this into the Darcy-Weisbach equation gives:(
∆p
L

)
l
= −Cf ,l ρl ⟨vl⟩2

R
= −0.00543 × 998 × 0.2582

0.04445
= −8.12 Pa m−1

(
∆p
L

)
g

= −
Cf ,g ρg ⟨vg⟩2

R
= −0.00374 × 0.774 × 31.222

0.04445
= −63.28 Pa m−1

Calculating the Martinelli parameter yeilds

X =

√
−8.12
−63.28

≈ 0.358

We could also use the following expression from the lecture notes:

Xtt =
(

1 − x
x

)0.875(
µliq.

µgas

)0.125(ρgas

ρliq.

)0.5

The quality, x , is given by the ratio of the gas mass flow-rate to the total mass flow-rate.

x =
Ṁg

Ṁg + Ṁl
=

0.15
0.15 + 1.6

≈ 0.0857
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We can now calculate the Martinelli parameter

Xtt =
(

1 − x
x

)0.875(
µliq.

µgas

)0.125(ρgas

ρliq.

)0.5

=
(

1 − 0.0857
0.0857

)0.875( 0.51
0.0108

)0.125(0.774
998

)0.5

≈ 0.358

Now we need to determine what expression to use for the two phase multiplier Φ2
liq., or Φ2

gas.
Using Chisholm’s relation, provided in the data sheet, we have for turbulent flows

Φ2
liq. = 1 +

20
X

+
1

X 2 Φ2
gas = 1 + 20 X + X 2

The two phase multipliers are then

Φ2
liq. = 1 +

20
0.358

+
1

0.3582 Φ2
gas = 1 + 20 × 0.358 + 0.3582

Φliq. ≈
√

64.67 ≈ 8.042 Φgas ≈
√

8.288 ≈ 2.879

d) Assuming the Farooqi and Richardson correlation holds for this system, calculate the
liquid hold-up and estimate the true average velocities of the gas and liquid phases.

[5 marks]
Solution:
The Farooqi and Richardson correlation is given by

H =


0.186 + 0.0191 X 1 < X < 5
0.143 X 0.42 5 < X < 50
1/ (0.97 + 19/X ) 50 < X < 500

Using the value of Xtt = 0.358 is problematic here, as it is outside the valid range of the
Farooqi-Richardson expression. The question says to assume that the correlation holds, so
the best thing we can do under the constraints of an exam would be to extrapolate the first
expression to lower values of the Martinelli parameter.

H = 0.186 + 0.0191 × 0.358 ≈ 0.193

A small Martinelli parameter indicates the gas phase flow is dominant in the flowline and
is capable of stripping all liquid from the line. Thus we expect the hold-up to continue
decreasing with decreasing X .

We note that the first expression has a valid minimum and maximum holdup of

Hmax = 0.186 + 0.0191 × 5 ≈ 0.2815 Hmin = 0.186 + 0.0191 × 1 ≈ 0.2051

The predicted value is outside of these values, but not by huge amount. These empirical
expressions have large errors, so we can continue with the calculation, but we must revise
this estimate with improved expressions at a later date.

To calculate the true average velocities, we need to calculate the cross-sectional area of the
pipe available for liquid and gas flow. This is given by

Al = A H Ag = A (1 − H)

= π 0.044452 × 0.193 = π 0.044452 (1 − 0.193)

≈ 0.00120 m2 ≈ 0.00501 m2
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Using this available area, we can estimate the true average velocities of the flow.

⟨vL⟩ =
Ml

Al ρl
=

1.6
0.00120 × 998

≈ 1.336 m s−1

⟨vL⟩ =
Mg

Ag ρg
=

0.15
0.00501 × 0.774

≈ 38.68 m s−1

This can be contrasted against the superficial velocities, ul = 0.258 m s−1 and ug = 31.22 m s−1.

e) Estimate the average density of the fluid using the liquid hold-up. [2 marks]
Solution:
The average density is given by

ρtwo−phase = ρl H + ρg (1 − H)
= 998 × 0.193 + 0.774 (1 − 0.193)

≈ 192 kg m−3

[Question total: 20 marks]

Question 71Q.71
Consider the segregated horizontal flow of water and air between two plates of width Z =
50 cm and length L, spaced H = 5 cm apart. The two fluid phases flow at a rate of V̇water =
10 l min−1 and V̇air = 45 l min−1.

At the conditions in the channel, water has a density of ρwater = 985 kg m−3 and a viscos-
ity of µwater = 0.51 × 10−3 Pa s. Air has a density of ρair = 1.14 kg m−3 and a viscosity of
µair = 1.89 × 10−5 Pa s.

a) Demonstrate that the no-slip liquid hold-up for this system is h ≈ 0.91 cm. Comment on
how realistic this estimation is. [4 marks]
Solution:
The no-slip liquid hold-up assumes the phases are flowing at the same velocity in the channel.
This implies that the ratio of their flow rates is proportional to the height in the channel.
Therefore, we have

h
H

=
V̇water

V̇water + V̇air
=

10
10 + 45

≈ 0.182

which means that h = 0.91 cm. It is unlikely that this estimate is particularly realistic as
there is significant slip of the gas phase in segregated flow.
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b) Define and calculate the superficial velocity, u, and the actual velocity, ⟨v⟩, for the each
phase, assuming the no-slip liquid holdup estimation is correct. [5 marks]
Solution:
The term superficial implies that values are calculated assuming that each phase of the
multi-phase mixture is flowing alone in the channel. For example, the superficial water
velocity is

uwater =
V̇water

H Z

The actual flow velocity is the average velocity over the actual flow area of the phase. For
example, the actual water velocity is

⟨v⟩water =
V̇water

h Z

The flow rates in standard units are

V̇air =
45 × 10−3

60
= 7.5 × 10−4 m3 s−1

V̇water =
10 × 10−3

60
≈ 1.67 × 10−4 m3 s−1

The corresponding superficial velocities are

uair =
7.5 × 10−4

0.5 × 0.05
= 0.03 m s−1

uwater =
1.67 × 10−4

0.5 × 0.05
= 0.0067 m s−1

The actual velocity is identical for each phase due to the no-slip assumption. E.g.:

⟨v⟩air =
7.5 × 10−4

0.5 × 0.0409
= 0.0367 m s−1

⟨v⟩water =
1.67 × 10−4

0.5 × 0.0091
= 0.0367 m s−1

We could also calculate this through the total volumetric flow rate divided by the full channel
flow-area.

c) The Reynolds number for single-phase flow in a pipe is defined as:

Re =
ρ ⟨v⟩ D

µ

i) Define and calculate the superficial Reynolds number for the water phase. You should
note that the characteristic length for flow between two plates is 2 H. [3 marks]
Solution:
The superficial Reynolds number is just the standard Reynolds number, but using the
superficial velocity.

Re =
2 ρuwater H

µ
=

2 × 985 × 0.0067 × 0.05
0.51 × 10−3 ≈ 1294

This indicates the flow is laminar if using the single-phase transition value.
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ii) Define and calculate the Reynolds number for the actual liquid phase using the hy-
draulic diameter. You can neglect the effect of the air phase (ignore its wetted peri-
meter). Is this definition consistent? [4 marks]
Solution:
The hydraulic diameter is given in the data sheet as (see Eq. (70))

DH =
4 A
Pw

The cross sectional area of the flow of the water phase is A = Z h (NOT H), and the
wetted perimeter of the water phase is Pw = Z (we can neglect the stress of the air
phase); therefore, we have

Re =
4 ρ ⟨v⟩h

µ
=

4 × 985 × 0.0367 × 0.0091
0.51 × 10−3 = 2580

This indicates the flow is turbulent.

iii) Comment on the difference between the two results, including the limitations of these
expressions. Is one estimate better than the other? [3 marks]
Solution:
The superficial Reynolds number is more likely to falsely predict laminar flow (when
using a transition region from 2000 → 2600) as it underestimates the fluid velocity.
The second Reynolds number is more likely to predict turbulent flow as it uses the
non-slip liquid hold-up (which will under-estimate the liquid hold-up due to gas slip).
However, the zero stress (unwetted air-liquid phase) condition makes this problem sim-
ilar to the bottom half of filled channel solution. In this case, we would make a substi-
tution h → h/2, and recover the first definition of the Reynolds number.
Overall, the first expression is probably better, but a better estimate of the liquid hold-
up is required to know for sure.

d) Assuming the no-slip liquid hold-up is correct, use the Chhabra-Richardson flow map to
calculate the flow-regime. [3 marks]
Solution:
Using the flow map in the data sheet gives that the flow regime is stratified, as expected.

e) Assuming the liquid hold-up remains constant, at what liquid flow-rate does the flow turn
intermittent? Why is this flow regime generally avoided? [3 marks]
Solution:
The transition point is around uwater =0.15 m s−1, which is a volumetric flow rate of V̇water =
0.15 × 0.5 × 0.05 = 3.75 × 10−3 m3 s−1, or 3.75 l s−1, or 225 l min−1.

This flow regime is typically avoided as intermittent flow is hard to control and unsteady-
state.

f) Consider the following vertical flow patterns.
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i) Name each flow pattern, and identify which you might class as intermittent flow.
Solution:

a) Bubble flow.
b) Slug flow (intermittent).
c) Churn flow (intermittent).
d) Annular flow.

ii) Which is the most desirable flow pattern if the pressure drop is to be minimised and
why?
Solution:
The most desirable pattern is annular flow, as this minimises the liquid hold-up, which
reduces the hydrostatic pressure loss.

[Question total: 25 marks]

Example multiple choice questions for EX3030

Figure 25: Non-newtonian flow profiles compared against the newtonian flow profile.
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1) In Fig. 25, which profile corresponds to a shear thinning fluid? [2 marks]

2) In Fig. 25, which profile corresponds to a viscoplastic fluid? [2 marks]

3) Which profile in Fig. 25 corresponds to a shear thickening fluid? [2 marks]

4) Which profile in Fig. 25 corresponds to a Bingham-plastic fluid? [2 marks]

5) Which fluid types illustrated using the flow profiles in Fig. 25 cannot be fitted using a
power-law model? [2 marks]

6) What are the value(s) of the flow index n in the Power-law model for a shear thickening
fluid? [2 marks]

A) n < 0

B) n < 1

C) n = 1

D) n > 1

7) Which value(s) of the flow index n in the Power-law model corresponds to a Newtonian
fluid? [2 marks]

A) n < 0.

B) n < 1.

C) n = 1.

D) n > 1.

8) The Prandtl number is a ratio of which two properties? [2 marks]

A) Inertial and viscous forces.

B) Momentum diffusivity and thermal diffusivity.

C) Buoyancy forces and thermal diffusivity.

D) Heat capacity and thermal diffusivity.compile

9) What is the Nusselt number for conduction through a plate of thickness L and conductivity
k? [2 marks]

A) Nu = 1

B) Nu = k/L

C) Nu = C Ren Prm

D) Nu = L/(k A)

10) The Grashof number is a ratio of what two properties? [2 marks]

A) Drag and viscous forces

B) Momentum diffusivity and thermal diffusivity

C) Buoyancy forces and thermal diffusivity

D) Buoyancy forces and viscous forces

11) Which region of the boiling curve in Fig. 26 is the nucleate boiling regime? [2 marks]
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Figure 26: A typical boiling heat flux versus driving temperature difference curve.

12) Which region of the boiling curve in Fig. 26 is the radiative boiling regime? [2 marks]

13) Which region of the boiling curve in Fig. 26 is the operation of the boiler unstable?
[2 marks]

14) Which region or point should a boiler be operated in? [2 marks]

15) In radiation, object 1 is entirely surrounded by object 2. The area of object 1 is 15 m2,
while object 2 has a surface area of 58 m2. What is the view-factor of object 2 from the
point-of-view of object 1, i.e., F1→2? [2 marks]

A) F1→2 ≈ 0.259

B) F1→2 = 1

C) F1→2 =≈ 3.87

D) F1→2 = 0

16) At what temperature should the properties used in the Prandtl number be evaluated for a
pipe with a temperature drop across its length? [2 marks]

A) Inlet temperature

B) Average of the wall and bulk temperature

C) Wall temperature

D) Centerline temperature

E) Average of inlet and outlet temperature

17) At what temperature should the properties used in the Prandtl number be evaluated at for
a isothermal vertical wall surrounded by a fluid which has another different temperature
far from the wall? [2 marks]

A) Inlet temperature.

B) Average of the wall and far fluid temperature.

C) Wall temperature.

D) Centerline temperature.

E) Average of inlet and outlet temperature.
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18) Two liquids flowing together in a channel, what is NOT a valid boundary condition?
[2 marks]

A) Stress in each phase is equal at the interface

B) No-slip between the two phases at the interface

C) No stress at the interface

D) No-slip between the fluid(s) and the adjacent wall

19) Two liquids are in contact with a species diffusing between them. Which boundary con-
dition is inappropriate? [2 marks]

A) Stress in each phase is equal at the interface.

B) The concentration of the diffusing species in each phase is equal at the interface.

C) Temperature in each phase is equal at the interface.

D) No-slip between the two phases at the interface.

20) A vertical wall 3 m high is at a temperature of Tw = 60 ◦C and ambient air is at T∞ = 10 ◦C.
The properties of air are given in the table below.

µ 1.78 × 10−5 Pa s ρ 1.2 kg m−3

k 0.02685 W m−1 K−1 Cp 1.005 kJ kg−1 K−1

What is the Grashof number for this flow (select the nearest value)? [2 marks]

A) Gr ≈ 2 × 103

B) Gr ≈ 2 × 105

C) Gr ≈ 2 × 109

D) Gr ≈ 2 × 1011

E) Gr ≈ 2 × 1015

21) The James Webb space telescope uses a five-layer sunshield. To what extent is the
radiative flux received from the sun reduced? [2 marks]

A) All radiation is removed.

B) 1/5th of the radiation passes through.

C) 1/6th of the radiation passes through.

D) 1/25th of the radiation passes through.

E) 1/60th of the radiation passes through.

22) If a fluid has a flow index of n = 1, what type of fluid is it? [2 marks]

A) Shear thickening.

B) Shear thinning.

C) Viscoplastic.

D) Newtonian.

E) Thixotropic.
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23) A wall, composed of plasterboard, brick, and insulation, is both radiating and convecting
heat on one of its sides. The other side is at a constant temperature. What is the correct
expression for its overall heat transfer coefficient? [2 marks],

A) Rtotal = Rbrick + Rplasterboard + Rinsulation +
(
R−1

radiative + R−1
convective

)−1

B) R−1
total = R−1

brick + R−1
plasterboard + R−1

insulation + (Rradiative + Rconvective)−1

C) Rtotal = Rbrick + Rplasterboard + Rinsulation + Rradiative + Rconvective

D) R−1
total = Rradiative + Rconvective +

(
R−1

brick + R−1
plasterboard + R−1

insulation

)−1

24) The walls of your house have a overal heat transfer coefficient of U ≈ 0.5 W m−2 K−1. If
the temperature outside is 5 ◦C, and inside is 23 ◦C, what is the heat flux? [2 marks]

A) 0.009 kW m−2

B) 9 kW m−2

C) 18 W m−2

D) 0.18 kW m−2

25) What is not a valid boundary condition for an air-water interface? [2 marks]

A) Stress in each phase is equal at the interface.

B) No-slip between the two phases at the interface.

C) Approximate that there is no stress at the interface.

D) The velocity is zero at the interface.

26) Consider the inside of an annulus (the zone between two concentric pipes) where the
inner radius is 20% of the outer radius. What fraction of radiation emitted from the outer
surface falls on the outer surface? [2 marks]

A) 0.8

B) 0.2

C) 1.0

D) 0.0

27) A viscoplastic fluid with a yield stress of τ0 = 5000 Pa is forced through a circular channel
with a diameter of 0.1 cm via a pressure gradient of 106 Pa m−1, what is the flowrate?

[2 marks]

A) 0 m3/hr.

B) ≈ 12 m3/hr.

C) ≈ 24 m3/hr.

D) 60 m hr−1.
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DATASHEET

General balance equations:

∂ρ

∂t
= −∇ · ρv (Mass/Continuity) (65)

∂CA

∂t
= −∇ · NA + σA (Species) (66)

ρ
∂v
∂t

= −ρv · ∇v −∇ · τ −∇ p + ρg (Momentum) (67)

ρCp
∂T
∂t

= −ρCp v · ∇T −∇ · q − τ : ∇v − p ∇ · v + σenergy (Heat/Energy) (68)

In Cartesian coordinate systems, ∇ can be treated as a vector of derivatives. In curvelinear
coordinate systems, the directions r̂ , θ̂, and ϕ̂ depend on the position. For convenience in
these systems, look-up tables are provided for common terms involving ∇.

Cartesian coordinates (with index notation examples)
where s is a scalar, v is a vector, and τ is a tensor.

∇s = ∇is =
[
∂ s
∂x

,
∂ s
∂y

,
∂ s
∂z

]
∇2s = ∇i∇is =

∂2 s
∂x2 +

∂2 s
∂y2 +

∂2 s
∂z2

∇ · v = ∇ivi =
∂ vx

∂x
+
∂ vy

∂y
+
∂ vz

∂z
∇ · τ = ∇i τij

[∇ · τ ]x =
∂ τxx

∂x
+
∂ τyx

∂y
+
∂ τzx

∂z

[∇ · τ ]y =
∂ τxy

∂x
+
∂ τyy

∂y
+
∂ τzy

∂z

[∇ · τ ]z =
∂ τxz

∂x
+
∂ τyz

∂y
+
∂ τzz

∂z
v · ∇v = vi ∇i vj

[v · ∇v ]x = vx
∂ vx

∂x
+ vy

∂ vx

∂y
+ vz

∂ vx

∂z

[v · ∇v ]y = vx
∂ vy

∂x
+ vy

∂ vy

∂y
+ vz

∂ vy

∂z

[v · ∇v ]z = vx
∂ vz

∂x
+ vy

∂ vz

∂y
+ vz

∂ vz

∂z
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Cylindrical coordinates
where s is a scalar, v is a vector, and τ is a tensor. All expressions involving τ are for
symmetrical τ only.

∇s =
[
∂ s
∂r

,
1
r
∂ s
∂θ

,
∂ s
∂z

]
∇2s =

1
r
∂

∂r

(
r
∂s
∂r

)
+

1
r 2

∂2 s
∂θ2 +

∂2 s
∂z2

∇ · v =
1
r
∂

∂r
(r vr ) +

1
r
∂ vθ

∂θ
+
∂ vz

∂z

[∇ · τ ]r =
1
r
∂

∂r
(r τrr ) +

1
r
∂ τrθ

∂θ
− 1

r
τθθ +

∂ τrz

∂z

[∇ · τ ]θ =
1
r
∂τθθ
∂θ

+
∂ τrθ

∂r
+

2
r
τrθ +

∂ τθz

∂z

[∇ · τ ]z =
1
r
∂

∂r
(r τrz) +

1
r
∂τθz

∂θ
+
∂ τzz

∂z

[v · ∇v ]r = vr
∂vr

∂r
+

vθ

r
∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z

[v · ∇v ]θ = vr
∂vθ

∂r
+

vθ

r
∂vθ

∂θ
+

vr vθ

r
+ vz

∂vθ

∂z

[v · ∇v ]z = vr
∂vz

∂r
+

vθ

r
∂vz

∂θ
+ vz

∂vz

∂z

Spherical coordinates
where s is a scalar, v is a vector, and τ is a tensor. All expressions involving τ are for
symmetrical τ only.

∇s =
[
∂ s
∂r

,
1
r
∂ s
∂θ

,
1

r sin θ

∂ s
∂ϕ

]
∇2s =

1
r 2

∂

∂r

(
r 2∂s
∂r

)
+

1
r 2 sin θ

∂

∂θ

(
sin θ

∂s
∂θ

)
+

1
r 2 sin2 θ

∂2 s
∂ϕ2

∇ · v =
1
r 2

∂

∂r
(
r 2 vr

)
+

1
r sin θ

∂

∂θ
(vθ sin θ) +

1
r sin θ

∂ vϕ

∂ϕ

[∇ · τ ]r =
1
r 2

∂

∂r
(
r 2 τrr

)
+

1
r sin θ

∂

∂θ
(τrθ sin θ) +

1
r sin θ

∂ τrϕ

∂ϕ
− τθθ + τϕϕ

r

[∇ · τ ]θ =
1
r 2

∂

∂r
(
r 2 τrθ

)
+

1
r sin θ

∂

∂θ
(τθθ sin θ) +

1
r sin θ

∂ τθϕ
∂ϕ

+
τrθ

r
− cot θ

r
τϕϕ

[∇ · τ ]ϕ =
1
r 2

∂

∂r
(
r 2 τrϕ

)
+

1
r
∂τθϕ
∂θ

+
1

r sin θ

∂ τϕϕ
∂ϕ

+
τrθ

r
+

2 cot θ
r

τθϕ

[v · ∇v ]r = vr
∂vr

∂r
+

vθ

r
∂vr

∂θ
+

vϕ

r sin θ

∂vr

∂ϕ
−

v2
θ + v2

ϕ

r

[v · ∇v ]θ = vr
∂vθ

∂r
+

vθ

r
∂vθ

∂θ
+

vϕ

r sin θ

∂vθ

∂ϕ
+

vr vθ − v2
ϕ cot θ

r

[v · ∇v ]ϕ = vr
∂vϕ

∂r
+

vθ

r
∂vϕ

∂θ
+

vϕ

r sin θ

∂vϕ

∂ϕ
+

vr vϕ + vθ vϕ cot θ
r
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Rectangular Cylindrical Spherical

qx −k ∂T
∂x qr −k ∂T

∂r qr −k ∂T
∂r

qy −k ∂T
∂y qθ −k 1

r
∂T
∂θ

qθ −k 1
r
∂T
∂θ

qz −k ∂T
∂z qz −k ∂T

∂z qϕ −k 1
r sin θ

∂T
∂ϕ

τxx −2µ∂vx
∂x + µB ∇ · v τrr −2µ∂vr

∂r + µB ∇ · v τrr −2µ∂vr
∂r + µB ∇ · v

τyy −2µ
∂vy
∂y + µB ∇ · v τθθ −2µ

(
1
r
∂vθ
∂θ

+ vr
r

)
+ µB ∇ · v τθθ −2µ

(
1
r
∂vθ
∂θ

+ vr
r

)
+ µB ∇ · v

τzz −2µ∂vz
∂z + µB ∇ · v τzz −2µ∂vz

∂z + µB ∇ · v τϕϕ
−2µ

(
1

r sin θ

∂vϕ
∂ϕ

+ vr +vθ cot θ
r

)
+µB ∇ · v

τxy −µ
(

∂vx
∂y + ∂vy

∂x

)
τrθ −µ

(
r ∂
∂r

( vθ
r

)
+ 1

r
∂vr
∂θ

)
τrθ −µ

(
r ∂
∂r

( vθ
r

)
+ 1

r
∂vr
∂θ

)
τyz −µ

(
∂vy
∂z + ∂vz

∂y

)
τθz −µ

(
1
r
∂vz
∂θ

+ ∂vθ
∂z

)
τθϕ −µ

(
sin θ

r
∂
∂θ

( vϕ
sin θ

)
+ 1

r sin θ
∂vθ
∂ϕ

)
τxz −µ

(
∂vx
∂z + ∂vz

∂x

)
τzr −µ

(
∂vr
∂z + ∂vz

∂r

)
τϕr −µ

(
1

r sin θ
∂vr
∂ϕ

+ r ∂
∂r

( vϕ
r

))
Table 4: Fourier’s law for the heat flux and Newton’s law for the stress in several coordinate
systems. Please remember that the stress is symmetric, so τij = τji .

Viscous models:
Power-Law Fluid:

|τxy | = k
∣∣∣∣∂vx

∂y

∣∣∣∣n (69)

Bingham-Plastic Fluid:

∂vx

∂y
=

{
−µ−1

(
τxy − τ0)

)
if τxy > τ0

0 if τxy ≤ τ0

Dimensionless Numbers

Re =
ρ ⟨v⟩ D

µ
ReH =

ρ ⟨v⟩ DH

µ
ReMR = −16 L ρ ⟨v⟩2

R ∆p
(70)

The hydraulic diameter is defined as DH = 4 A/Pw .
Single phase pressure drop calculations in pipes:
Darcy-Weisbach equation:

∆p
L

= −Cf ρ ⟨v⟩2

R
(71)

where Cf = 16/Re for laminar Newtonian flow. For turbulent flow of Newtonian fluids in
smooth pipes, we have the Blasius correlation:

Cf = 0.079 Re−1/4 for 2.5 × 103 < Re < 105 and smooth pipes.

Otherwise, you may refer to the Moody diagram.
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Figure 27: The Moody diagram for flow in pipes.

Laminar Power-Law fluid:

V̇ =
n π R3

3 n + 1

(
R
2 k

) 1
n
(
−∆p

L

) 1
n

Two-Phase Flow:
Lockhart-Martinelli parameter:

X 2 =
∆pliq.−only

∆pgas−only

Pressure drop calculation:

∆ptwo−phase = Φ2
liq. ∆pliq.−only = Φ2

gas ∆pgas−only

Chisholm’s relation:

Φ2
gas = 1 + c X + X 2

Φ2
liq. = 1 +

c
X

+
1

X 2 c =


20 turbulent liquid & turbulent gas
12 laminar liquid & turbulent gas
10 turbulent liquid & laminar gas
5 laminar liquid & laminar gas

Farooqi and Richardson expression for liquid hold-up in co-current flows of Newtonian fluids
and air in horizontal pipes:

h =


0.186 + 0.0191 X 1 < X < 5
0.143 X 0.42 5 < X < 50
1/ (0.97 + 19/X ) 50 < X < 500
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Heat Transfer Dimensionless numbers:

Nu =
h L
k

Pr =
µCp

k
Gr =

g β ρ2 (Tw − T∞) L3

µ2

where β = V−1(∂V/∂T ).
Heat transfer: Resistances

Q = UT AT ∆T = R−1
T ∆T

Conduction Shell Resistances Radiation
Rect. Cyl. Sph.

R
X

k A
ln (Router/Rinner )

2 π L k
R−1

inner − R−1
outer

4π k

[
A ε σ

(
T 2

j + T 2
i

) (
Tj + Ti

)]−1

Radiation Heat Transfer:
Stefan-Boltzmann constant σ = 5.6703 × 10−8 W m−2 K−4.
Summation relationship,

∑
j Fi→j = 1, and reciprocity relationship, Fi→j Ai = Fj→i Aj . Radiation

shielding factor 1/(N + 1).

Qrad .,i→j = σ εFi→j Ai
(
T 4

j − T 4
i

)
= hrad . A (T∞ − Tw )

Natural Convection

Ra = Gr Pr C m
< 104 1.36 1/5
104–109 0.59 1/4
> 109 0.13 1/3

Table 5: Natural convection coefficients for isothermal vertical plates in the empirical relation
Nu ≈ C (Gr Pr)m.
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For isothermal vertical cylinders, the above expressions for isothermal vertical plates may
be used but must be scaled by a factor, F (i.e., Nuv .cyl . = F Nuv .plate):

F =

1 for (D/H) ≥ 35 Gr−1/4
H

1.3
[
H D−1 Gr−1

D

]1/4
+ 1 for (D/H) < 35 Gr−1/4

H

(72)

where D is the diameter and H is the height of the cylinder. The subscript on Gr indicates
which length is to be used as the critical length to calculate the Grashof number.
Churchill and Chu expression for natural convection from a horizontal pipe:

Nu1/2 = 0.6 + 0.387

 Gr Pr[
1 + (0.559/Pr)9/16

]16/9


1/6

for 10−5 < Gr Pr < 1012 (73)

Forced Convection:
Laminar flows:

Nu ≈ 0.332 Re1/2 Pr1/3 (74)

Well-Developed turbulent flows in smooth pipes:

Nu ≈ 0.023 Re4/5
D Prn (75)

where n = 0.4 if the fluid is being heated, and n = 0.3 if the fluid is being cooled.
Boiling:
Forster-Zuber pool-boiling coefficient:

hnb = 0.00122
k0.79

L C0.45
p,L ρ0.49

L

γ0.5 µ0.29
L h0.24

fg ρ0.24
G

(Tw − Tsat )0.24 (pw − psat )0.75 (76)

Mostinski correlations:

hnb = 0.104 p0.69
c q0.7

[
1.8
(

p
pc

)0.17

+ 4
(

p
pc

)1.2

+ 10
(

p
pc

)10
]

(77)

qc = 3.67 × 104 pc

(
p
pc

)0.35 [
1 − p

pc

]0.9

(78)

(Note: for the Mostinski correlations, the pressures are in units of bar)
Condensing:
Horizontal pipes

h = 0.72
(

k3 ρ2 gx Elatent

D µ (Tw − T∞)

)1/4

(79)

Lumped capacitance method:

Bi =
h Lc

κ
Lc = V/A for Bi < 0.1
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T (t) − T∞

T0 − T∞
= e−bt b =

hAs

ρVCp

1-D Transient Heat Conduction:

Fo =
α∆t

(∆x)2 = τ , α = κ
(
ρCp

)−1

θwall =
T (x , t) − T∞

Ti − T∞
= A1e−λ2

1τ cos
(
λ1x
L

)
, θcyl =

T (r , t) − T∞

Ti − T∞
= A1e−λ2

1τJ0

(
λ1r
r0

)

θsph =
T (r , t) − T∞

Ti − T∞
= A1e−λ2

1τ
sin
(

λ1r
r0

)
λ1r
r0

θ0,wall = θ0,cyl = θ0,sph =
T0 − T∞

Ti − T∞
= A1e−λ2

1τ

(
Q

Qmax

)
wall

= 1 − θ0,wall
sinλ1

λ1
,
(

Q
Qmax

)
cyl

= 1 − 2θ0,cyl
J1 (λ1)
λ1

(
Q

Qmax

)
sph

= 1 − 3θ0,sph
sinλ1 − λ1 cosλ1

λ3
1

Finite-Difference Method:

∂

∂t
(ρϕ) +

∂

∂x
(ρvϕ) = ∇ · (Γ∇ϕ) + S (1D transport equation)

(
dϕ
dx

)
i
=
ϕi+1 − ϕi−1

2∆x
and

(
d2ϕ

dx2

)
i
=
ϕi−1 + ϕi+1 − 2ϕi

(∆x)2

T j+1
i = (1 − 2τ ) T j

i + τ
(

T j
i+1 + T j

i−1

)
+
τ (∆x)2

κ
S j

i

Overall Heat Transfer Coefficient:

Q̇ =
∆T
R

= UA∆T = UiAi∆T = UoAo∆T

R = Ri + Rwall + Ro =
1

hiAi
+

ln Do/Di

2πκL
+

1
hoAo

Fouling Factor:

R =
1

hiAi
+

Rf,i

Ai
+ Rwall +

Rf,o

Ao
+

1
hoAo
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LMTD Method:

Q̇ = UAs∆Tlm with ∆Tlm =
∆T2 −∆T1

ln ∆T2
∆T1

=
∆T1 −∆T2

ln ∆T1
∆T2

Parallel flows:

{
∆T1 = Thot,in − Tcold,in

∆T2 = Thot,out − Tcold,out

Counter flows:

{
∆T1 = Thot,in − Tcold,out

∆T2 = Thot,out − Tcold,in

ϵ-NTU Method:

ϵ =
Q̇

Q̇max
, with Q̇max = Cmin (Thot,in − Tcold,in) and Cmin = Min {ṁhotCp,hot, ṁcoldCp,cold}

NTU =
UAs

Cmin
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Figure 28: Hewitt-Taylor flow pattern map for multiphase flows in vertical pipes.

Figure 29: Chhabra and Richardson flow pattern map for horizontal pipes.
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Figure 30: Coefficients for the 1D transient equations.
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Figure 31:
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Figure 32:
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Figure 33:
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Extracted from Y.A. Cengel, “Heat Transfer: A Practical Approach”, 2nd Edition. 

Figure 10.8 

Figure 34: Correction-factors for LMTD Method, extracted from Y. A. Cengel, “Heat trans-
fer:A practical approach”, 2nd Ed.

Extracted from Y.A. Cengel, “Heat Transfer: A Practical Approach”, 2nd Edition. 

Figure 10.8 

Figure 35: Correction-factors for LMTD Method, extracted from Y. A. Cengel, “Heat trans-
fer:A practical approach”, 2nd Ed.
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Figure 36: NTU relations extracted from Y. A. Cengel, “Heat transfer:A practical approach”,
2nd Ed.

Extracted from Y.A. Cengel, “Heat Transfer: A Practical Approach”, 2nd Edition. 

Figure 10.13 

Figure 10.15 

Figure 37: NTU plots extracted from Y. A. Cengel, “Heat transfer:A practical approach”, 2nd
Ed.
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Diffusion Dimensionless Numbers

Sc =
µ

ρDAB
Le =

k
ρCp DAB

Diffusion
General expression for the flux:

NA = JA + xA

∑
B

NB

Fick’s law:

JA = −DAB ∇CA

Stefan’s law:

Ns,r = −D
c

1 − x
∂x
∂r

Ideal Gas

P V = n R T R ≈ 8.314598 J K−1 mol−1

Geometry

Pcircle = 2π r Acircle = π r 2 Asphere = 4π r 2 Vsphere =
4
3
π r 3

Acylinder = Pcircle L Vcylinder = Acircle L
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